Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Superphylum: Deuterostomia
Phylum: Chordata
Subphylum: Vertebrata
Infraphylum: Gnathostomata
Megaclassis: Osteichthyes
Cladus: Sarcopterygii
Cladus: Rhipidistia
Cladus: Tetrapodomorpha
Cladus: Eotetrapodiformes
Cladus: Elpistostegalia
Superclassis: Tetrapoda
Cladus: Reptiliomorpha
Cladus: Amniota
Classis: Reptilia
Cladus: Eureptilia
Cladus: Romeriida
Subclassis: Diapsida
Cladus: Sauria
Infraclassis: Archosauromorpha
Cladus: Crurotarsi
Divisio: Archosauria
Cladus: Avemetatarsalia
Cladus: Ornithodira
Subtaxon: Dinosauromorpha
Cladus: Dinosauriformes
Cladus: Dracohors
Cladus: Dinosauria
Ordo: Saurischia
Cladus: Eusaurischia
Subordo: Theropoda
Cladus: Neotheropoda
Cladus: Averostra
Cladus: Tetanurae
Cladus: Avetheropoda
Cladus: Coelurosauria
Cladus: Tyrannoraptora
Cladus: Maniraptoromorpha
Cladus: Maniraptoriformes
Cladus: Maniraptora
Cladus: Pennaraptora
Cladus: Paraves
Cladus: Eumaniraptora
Cladus: Avialae
Infraclassis: Aves
Cladus: Euavialae
Cladus: Avebrevicauda
Cladus: Pygostylia
Cladus: Ornithothoraces
Cladus: Ornithuromorpha
Cladus: Carinatae
Parvclassis: Neornithes
Cohors: Neognathae
Cladus: Neoaves
Cladus: Telluraves
Cladus: Australaves
Infraclassis: Aves
Cohors: Neognathae
Cladus: Neoaves
Cladus: Telluraves
Cladus: Australaves
secundum Ericson, 2012
Ordines: Passeriformes – Psittaciformes
Familiae: Cariamidae – Falconidae
secundum Yuri et al., 2013
Ordines: Cariamiformes – Falconiformes – Passeriformes – Psittaciformes
secundum Jarvis et al., 2014
Ordines: Cariamiformes – Falconiformes – Passeriformes – Psittaciformes
secundum Houde et al., 2019
Ordines: Cariamiformes – Falconiformes – Passeriformes – Psittaciformes
Name
Australaves Ericson, 2012: 815 ["Australavis"]
References
Primary references
Ericson, P.G.P. "2012" [2011]. Evolution of terrestrial birds in three continents: biogeography and parallel radiations. Journal of Biogeography 39(5): 813–824. DOI: 10.1111/j.1365-2699.2011.02650.x Reference page.
Additional references
Yuri, T., Kimball, R.T., Harshman, J., Bowie, R.C.K., Braun, M.J., Chojnowski, J.L., Han, K.-L., Hackett, S.J., Huddleston, C.J., Moore, W.S., Reddy, S., Sheldon, F.H., Steadman, D.W., Witt, C.C. & Braun, E.L. 2013. Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals. Biology 2(1): 419–444. DOI: 10.3390/biology2010419 ResearchGate Reference page.
Jarvis, E.D., Mirarab, S, Aberer, A.J., Li, B., Houde, P., Li, C., Ho, S.Y.W., Faircloth, B.C., Nabholz, B., Howard, J.T., Suh, A., Weber, C.C., da Fonseca, R.R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, S., Zavidovych, V., Subramanian, S., Gabaldón, T., Capella-Gutiérrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W.C., Ray, D., Green, R.E., Bruford, M.W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E.P., Bertelsen, M.F., Sheldon, F.H., Brumfield, R.T., Mello, C.V., Lovell, P.V., Wirthlin, M., Schneider, M.P.C., Prosdocimi, F., Samaniego, J.A., Vargas Velazquez, A.M., Alfaro-Núñez, A., Campos, P.F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D.M., Zhou, Q., Perelman, P., Driskell, A.C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F.E., Braun, M., Fjeldså, J., Orlando, L., Barker, F.K., Jønsson, K.A., Johnson, W., Koepfli, K.-P., O’Brien, S.J., Haussler, D., Ryder, O.A., Rahbek, C., Willerslev, E., Graves, G.R., Glenn, T.C., McCormack, J., Burt, D., Ellegren, H., Alström, P., Edwards, S.V., Stamatakis, A., Mindell, D.P., Cracraft, J., Braun, E.L., Warnow, T., Jun, W., Gilbert, M.T.P. & Zhang, G. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346 (6215): 1320–1331. DOI: 10.1126/science.1253451 ResearchGate. Supplementary materials: PDF Reference page.
Houde, P., Braun, E.L., Narula, N., Minjares, U. & Mirarab, S. 2019. Phylogenetic Signal of Indels and the Neoavian Radiation. Diversity 11(7): 108. DOI: 10.3390/d11070108 ResearchGate Reference page.
Vernacular names
English: Southern Birds
Australaves[3] is a recently defined[4] clade of birds, consisting of the Eufalconimorphae (passerines, parrots and falcons) as well as the Cariamiformes (including seriemas and the extinct "terror birds").[5] They appear to be the sister group of Afroaves.[5] As in the case of Afroaves, the most basal clades have predatory extant members, suggesting this was the ancestral lifestyle;[6] however, some researchers like Darren Naish are skeptical of this assessment, since some extinct representatives such as the herbivorous Strigogyps led other lifestyles.[7] Basal parrots and falcons are at any rate vaguely crow-like and probably omnivorous.[8]
Australaves |
|
||||||||||||||||||
Cladogram of Telluraves relationships based on Kuhl et al. (2020) and Braun & Kimball (2021)[9][10]
References
Boles, Walter E. (1997). "Fossil songbirds (Passeriformes) from the Early Eocene of Australia". Emu. 97 (1): 43–50. doi:10.1071/MU97004.
Kuhl., H.; Frankl-Vilches, C.; Bakker, A.; Mayr, G.; Nikolaus, G.; Boerno, S. T.; Klages, S.; Timmermann, B.; Gahr, M. (2020). "An unbiased molecular approach using 3'UTRs resolves the avian family-level tree of life". Molecular Biology and Evolution. 38: 108–127. doi:10.1093/molbev/msaa191. PMC 7783168. PMID 32781465.
Kimball RT, Wang N, Heimer-McGinn V, Ferguson C, Braun EL (2013). "Identifying localized biases in large datasets: A case study using the Avian Tree of Life". Molecular Phylogenetics and Evolution. Mol Phylogenet Evol. 69 (3): 1021–1032. doi:10.1016/j.ympev.2013.05.029. PMID 23791948.
Ericson, P. G. (2012). "Evolution of terrestrial birds in three continents: biogeography and parallel radiations". Journal of Biogeography. 39 (5): 813–824. doi:10.1111/j.1365-2699.2011.02650.x. S2CID 85599747.
Prum, R.O. et al. (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573.
Jarvis, E. D.; Mirarab, S.; Aberer, A. J.; Li, B.; Houde, P.; Li, C.; Ho, S. Y. W.; Faircloth, B. C.; Nabholz, B.; Howard, J. T.; Suh, A.; Weber, C. C.; Da Fonseca, R. R.; Li, J.; Zhang, F.; Li, H.; Zhou, L.; Narula, N.; Liu, L.; Ganapathy, G.; Boussau, B.; Bayzid, M. S.; Zavidovych, V.; Subramanian, S.; Gabaldon, T.; Capella-Gutierrez, S.; Huerta-Cepas, J.; Rekepalli, B.; Munch, K.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds" (PDF). Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. hdl:10072/67425. PMC 4405904. PMID 25504713. Archived from the original (PDF) on 2015-02-24. Retrieved 2015-08-29.
Mayr, G. & Ritchter, G. (2011) Exceptionally preserved plant parenchyma in the digestive tract indicates a herbivorous diet in the Middle Eocene bird Strigogyps sapea (Ameghinornithidae). Paläontologische Zeitschrift, Volume 85, Issue 3, pp 303–307.
L. D. Martin. 2010. Paleogene avifauna of the holarctic. Vertebrata PalAsiatica 48:367-374
H Kuhl, C Frankl-Vilches, A Bakker, G Mayr, G Nikolaus, S T Boerno, S Klages, B Timmermann, M Gahr (2020) An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msaa191
Braun, E.L. & Kimball, R.T. (2021) Data types and the phylogeny of Neoaves. Birds, 2(1), 1-22; https://doi.org/10.3390/birds2010001
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License