Fine Art

Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Protostomia
Cladus: Ecdysozoa
Cladus: Panarthropoda
Phylum: Arthropoda
Subphylum: Hexapoda
Classis: Insecta
Cladus: Dicondylia
Subclassis: Pterygota
Cladus: Metapterygota
Infraclassis: Neoptera
Cladus: Eumetabola
Cladus: Endopterygota
Superordo: Coleopterida
Ordo: Coleoptera
Subordo: Polyphaga
Infraordo: Scarabaeiformia
Superfamilia: Scarabaeoidea

Familia: Scarabaeidae
Subfamilia: Scarabaeinae
Tribus (12): Ateuchini - Coprini - Deltochilini - Eucraniini - Gymnopleurini - Oniticellini - Onitini - Onthophagini - Parachoriini – Phanaeini - Scarabaeini - Sisyphini
[source: Bouchard et al. (2011)]Ateuchini - Canthonini - Coprini - Eucraniini - Eurysternini - Gymnopleurini - Oniticellini - Onitini - Onthophagini - Phanaeini - Scarabaeini -

Genera (281 + 10†): Acanthonitis – Afrodrepanus – Agamopus – Aliuscanthoniola – Allogymnopleurus – Allonitis – Alloscelus – Amietina – Amphiceratodon – Amphistomus – Anisocanthon – Anoctus – Anomiopsoides – Anomiopus – Anonychonitis – Anoplodrepanus – Aphengium – Aphengoecus – Apotolamprus – Aptenocanthon – Apterepilissus – Aptychonitis – Arachnodes – Ateuchetus – †Ateuchites – Ateuchus – Attavicinus – Aulacopris – †Avitortor – †Baisarabaeus – Baloghonthobium – Bdelyropsis – Bdelyrus – Besourenga – Bohepilissus – Bolbites – Boletoscapter – Bradypodidium – Bubas – Byrrhidium – Caccobiomorphus – Caccobius – Caeconthobium – Cambefortantus – Cambefortius – Canthidium – Canthochilum – Canthodimorpha – Canthon – Canthonella – Canthonidia – Canthonosoma – Canthotrypes – Cassolus – Catharsiocopris – Catharsius – Cephalodesmius – Chalcocopris – Chalconotus – Cheironitis – Chiron – Circellium – Cleptocaccobius – Clypeodrepanus – Copridaspidus – Copris – Coproecus – Coprophanaeus – Coptodactyla – Coptorhina – †Cretorabaeus – †Cretoscarabaeus – Cryptocanthon – Cyobius – Cyptochirus – Degallieridium – Delopleurus – Deltepilissus – Deltochilum – Deltorhinum – Demarziella – Dendropaemon – Diabroctis – Diastellopalpus – Dichotomius – Dicranocara – Digitonthophagus – Diorygopyx – Disphysema – Dorbignyolus – Drepanocerus – Drepanoplatynus – Drepanopodus – Drogo – Dwesasilvasedis – Endroedyolus – Ennearabdus – Eodrepanus – Epactoides – Epidrepanus – Epilissus – Epirinus – Escarabaeus – Eucranium – Eudinopus – Euoniticellus – Euonthophagus – Eurysternus – Eusaproecius – Eutrichillum – Falsignambia – Feeridium – Frankenbergerius – Garreta – Genieridium – Gilletellus – Glyphoderus – Gromphas – Gymnopleurus – Gyronotus – Hammondantus – Hamonthophagus – Hansreia – Haroldius – Helictopleurus – Heliocopris – Heteroclitopus – Heteronitis – Holcorobeus – Holocanthon – Holocephalus – Homalotarsus – Homocopris – Homocorpis – Hyalonthophagus – †Hybosorites – Hypocanthidium – Ignambia – Isocopris – Ixodina – Janssensantus – Janssensellus – Kheper – Kolbeellus – Krikkenius – Kurtops – Labroma – Larhodius – Latodrepanus – Leotrichillum – Lepanus – Liatongus – †Lithanomala – †Lithoscarabaeus – Litocopris – †Lobateuchus – Lobidion – Lophodonitis – Macroderes – Macropanelus – Malagoniella – Martinezidium – Matthewsius – Megalonitis – Megatharsis – Megathopa – Megathoposoma – Melanocanthon – Mentophilus – Metacatharsius – Microcopris – Milichus – Mimonthophagus – Mnematidium – Mnematium – Monoplistes – Monteithocanthon – Morettius – Namakwanus – Nanos – Nebulasilvius – Neonitis – Neosaproecius – Neosisyphus – Nesosisyphus – Nesovinsonia – Nitiocellus – Nunoidium – Ochicanthon – Odontoloma – Oficanthon – Oniticellus – Onitis – Onoreidium – Ontherus – Onthobium – Onthophagus – Onychothecus – Oruscatus – Outenikwanus – Oxysternon – Pachylomera – Pachysoma – Panelus – Paracanthon – Parachorius – Paracryptocanthon – Paragymnopleurus – Paraixodina – Paraphacosomoides – Paraphytus – Parascatonomus – Parateuchus – Paroniticellus – Paronitis – Paronthobium – Parvuhowdenius – Peckolus – Pedaria – Pedaridium – Penalus – Pereiraidium – Phaedotrogus – Phalops – Phanaeus – Pinacopodius – Pinacotarsus – Platyonitis – Pleronyx – Pleuronitis – Proagoderus – †Proteroscarabaeus – Pseudignambia – Pseudocanthon – Pseudochironitis – Pseudocopris – Pseudonthobium – Pseudopedaria – Pseudosaproecius – Pseuduroxys – Pycnopanelus – Saphobiamorpha – Saphobius – Sarophorus – Sauvagesinella – Scaptocnemis – Scaptodera – Scarabaeolus – Scarabaeus – Scatimus – Scatonomus – Scatrichus – Sceliages – Scybalocanthon – Scybalophagus – Silvaphilus – Silvinha – Sinapisoma – Sinodrepanus – Sisyphus – Stiptocnemis – Stiptopodius – Stiptotarsus – Streblopus – Sukelus – Sulcophanaeus – Sylvicanthon – Synapsis – Tanzanolus – Temnoplectron – Tesserodon – Tesserodoniella – Tetraechma – Theotimius – Thyregis – Tibiodrepanus – Tiniocellus – Tomogonus – Tragiscus – Trichillidium – Trichillum – Tropidonitis – Unidentis – Uroxys – Versicorpus – Vulcanocanthon – Walterantus – Xenocanthon – Xinidium – Yvescambefortius – Zonocopris
In synonymy

Anonthobium – Arrowianella – Caccobiomorphus
Name

Scarabaeinae Latreille, 1802
References

Latreille, P.A. 1802. Histoire naturelle, générale et particulière des crustacés et des insectes. Ouvrage faisant suite à l’histoire naturelle générale et particulière, composée par Leclerc de Buffon, et rédigée par C.S. Sonnini, membre de plusieurs sociétés savantes. Familles naturelles des genres. Tome troisième. F. Dufart, Paris, xii + pp. 13–467 + [1 (errata)]. BHL Reference page.
Gunter, N.L. & Weir, T.A. 2017. Two new genera of Australian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) with the description of six new species and transfer of six described species. Zootaxa 4290(2): 201–243. DOI: 10.11646/zootaxa.4290.2.1. Reference page.

Additional references

Aristophanous, M. 2010: Does your preservative preserve? A comparison of the efficacy of some pitfall trap solutions in preserving the internal reproductive organs of dung beetles. ZooKeys, 34: 1–16. DOI: 10.3897/zookeys.34.215
Baird, E.; Byrne, M.J.; Smolka, J.; Warrant, E.J.; Dacke M. 2012: The dung beetle dance: an orientation behaviour? PLoS ONE, 7(1): e30211 DOI: 10.1371/journal.pone.0030211
Bezděk, A. & Hájek, J. 2011. Catalogue of type specimens of beetles (Coleoptera) deposited in the National Museum, Prague, Czech Republic. Scarabaeidae: Scarabaeinae: Ateuchini and Canthonini. Acta Entomologica Musei Nationalis Pragae 51(1): 349–378. PDF Reference page.
Bezděk, A. & Hájek, J. 2013. Catalogue of type specimens of beetles (Coleoptera) deposited in the National Museum, Prague, Czech Republic. Scarabaeidae: Scarabaeinae: Onitini, Onthophagini, Phanaeini, Scarabaeini and Sisyphini. Acta Entomologica Musei Nationalis Pragae 53(1): 387–442. PDF Reference page.
Bouchard, P., Bousquet, Y., Davies, A.E., Alonso-Zarazaga, M.A., Lawrence, J.F., Lyal, C.H.C., Newton, A.F., Reid, C.A.M., Schmitt, M., Ślipiński, S.A. & Smith, A.B.T. 2011. Family-group names in Coleoptera (Insecta). ZooKeys 88: 1–972. DOI: 10.3897/zookeys.88.807 Open access. PMC: 3088472 Open access. Reference page.
Chamorro, W., Marin-Armijos, D., Asenjo, A. & Vaz-de-Mello, F.Z. 2019. Scarabaeinae dung beetles from Ecuador: a catalog, nomenclatural acts, and distribution records. Zookeys, 826: 1–343. DOI: 10.3897/zookeys.826.26488 Reference page.
Fincher, G.T. (1975) Effects of dung beetle activity on the number of nematode parasites acquired by grazing cattle. J. Parasitol. 61, 759–762.
González-Vainer, P. 2015: Feeding, reproductive, and nesting behavior of Canthon bispinus Germar (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopterists bulletin 69(1): 61–72. DOI: 10.1649/0010-065X-69.1.61 Reference page.
Medina, C.A.; Molano, F.; Scholtz, C.H. 2013: Morphology and terminology of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) male genitalia. Zootaxa 3626(4): 455–476. DOI: 10.11646/zootaxa.3626.4.3 Reference page.
Miraldo, A.; Wirta, H.; Hanski, I. 2011: Origin and diversification of dung beetles in Madagascar. Insects 2(2): 112–127. DOI: 10.3390/insects2020112 Reference page.
Monaghan, M.T.; Inward, D.J.G.; Hunt, T.; Vogler, A.P. 2007: A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). Molecular phylogenetics and evolution, 45(2): 674–692. DOI: 10.1016/j.ympev.2007.06.009
Nichols, E. et al. 2008: Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological conservation, 141(6): 1461–1474. DOI: 10.1016/j.biocon.2008.04.011
Sabu, T.K.; Nithya, S.; Vinod, K.V. 2011: Faunal survey, endemism and possible species loss of Scarabaeinae (Coleoptera: Scarabaeidae) in the western slopes of the moist South Western Ghats, South India. Zootaxa, 2830: 29–38. Preview PDF
Sánchez, M.V. & Genise, J.F. 2015: The brood ball of Canthon (Canthon) lituratus Germar (Coleoptera: Scarabaeidae: Scarabaeinae) and its fossil counterpart Coprinisphaera cotiae Sánchez and Genise new ichnospecies, with a brief review of South American fossil brood balls. Coleopterists bulletin 69(1): 73-82. DOI: 10.1649/0010-065X-69.1.73 Reference page.
Simmons, L.W.; Ridsdill-Smith, T.J. (eds.) 2011: Ecology and evolution of dung beetles. Blackwell. Print ISBN 9781444333152 Online ISBN 9781444342000 DOI: 10.1002/9781444342000
Smith, A.B.T. 2006: A review of the family-group names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification. Coleopterists Society monograph, 5: 144–204. DOI: 10.1649/0010-065X(2006)60[144:AROTFN]2.0.CO;2 PDF
Sole, C.L.; Scholtz, C.H. 2010: Did dung beetles arise in Africa? A phylogenetic hypothesis based on five gene regions. Molecular phylogenetics and evolution, 56(2): 631–641. DOI: 10.1016/j.ympev.2010.04.023
Solís, Á.; Kohlmann, B. 2012: Checklist and distribution atlas of the Scarabaeinae (Coleoptera: Scarabaeidae) of Costa Rica. Zootaxa 3482: 1–32. Preview PDF Reference page.
Tarasov, S.I. 2017. A cybertaxonomic revision of the new dung beetle tribe Parachoriini (Coleoptera: Scarabaeidae: Scarabaeinae) and its phylogenetic assessment using molecular and morphological data. Zootaxa 4329(2): 101–149. DOI: 10.11646/zootaxa.4329.2.1. Full article (PDF) Reference page.
Vaz-de-Mello, F.Z.; Edmonds, W.D.; Ocampo, F.C.; Schoolmeesters, P. 2011: A multilingual key to the genera and subgenera of the subfamily Scarabaeinae of the New World (Coleoptera: Scarabaeidae). Zootaxa, 2854: 1–73. Preview PDF
Subfamily Scarabaeinae (Scarabaeidae) - atlas of scarab beetles of Russia
A.V. Frolov Subfamily Scarabaeinae: atlas of representatives of the tribes (Scarabaeidae)
Catalogue of Palearctic Coleoptera. Vol. 3 ed. I. Lobl, & A. Smetana, Apollo Books, Stenstrup, Denmark, 2006
ISBN 87-88757-59-5, p.150

Links

Lifedesks

Vernacular names
Afrikaans: Miskruier
العربية: جعل
English: True Dung beetles
Esperanto: Skarabo
français: Bousier
עברית: קרנפית
hts: Zingiri
Ido: Sterko-skarabeo
italiano: Scarabeo stercorario
русский: Скарабеины

The scarab beetle subfamily Scarabaeinae consists of species collectively called true dung beetles. Most of the beetles of this subfamily feed exclusively on dung. However, some may feed on decomposing matter including carrion, decaying fruits and fungi. Dung beetles can be placed into three structural guilds based on their method of dung processing namely rollers, dwellers and tunnelers [3] Dung removal and burial by dung beetles result in ecological benefits such as soil aeration and fertilization; improved nutrient cycling and uptake by plants, increase in Pasture quality, biological control of pest flies and intestinal parasites and secondary seed dispersal.[4] Well-known members include the genera Scarabaeus and Sisyphus, and Phanaeus vindex.

Description

Adult dung beetles have modified mouth parts which are adapted to feeding on dung. The clypeus is expanded and covers the mouth parts. The elytra, which cover the wings, expose the pygidium. They also have a space between their middle legs to allow for manipulation of the dung. Dung beetles can be large beetles of a few inches in size to small beetles which are only a few millimeters in size [5]
Guilds

Dung beetles are classified into groups based on their method of processing the dung. Rollers are beetles that construct balls of dung from the main food source. They roll away this ball from the position of the original food source and use the dung for feeding or for reproduction. Tunnelers are beetles that dig tunnels beneath the food source creating nests. They relocate food into their nest for reproduction and feeding. Lastly, dwellers are beetles that live and reproduce inside the food source rarely creating nests.[3]
Reproduction

Pheromones are thought to aid in dung beetle reproduction. Dung beetles copulate after which both parents dig a tunnel to lay the eggs. This tunnel may have different branches leading to varying egg chambers or may not be branched depending on species. Both parents take dung inside the tunnels in the form of brood balls and the females lay the egg inside the dung. When the larva hatches it feeds on the surrounding dung and forms a pupa undergoing several instars. After this stage the pupa hatches and the newly formed adult evades the tunnel and searches for a fresh dung supply for feeding. After approximately 2 weeks the new adult beetle will be able to reproduce.[citation needed]
Ecology

Dung beetle communities are dependent on vegetation and presence of mammalian dung resource. In an area with a lot of vegetation, the dung pads are preserved longer for dung beetle utilization. Vegetation provides conditions suitable for vertebrate trafficking allowing more dung presence in the area. In areas with little vegetation, limited vertebrate fauna may be present limiting the types of dung present. Also, with little vegetation the canopy of the forest may be limiting. This causes the dung pads to be exposed to sunlight, higher temperature and wind action. These factors contribute to dung pad desiccation which decreases the period of suitable dung availability. Dung beetles of different groups may respond to changes in vegetation in different ways.[6]

A decline in dung beetle diversity associated with the conversion of native forests to open pastures is known to occur. However, some species are able to utilize dung in open pasture conditions. Tunneler species are able to utilize dung in less optimal condition because the tunnel beneath the dung and utilize it from bottom up. As desiccation occurs on the top of the dung pad, the middle and lower regions may still be suitable for the dung beetle. Also, smaller species are able to survive in such conditions as they require less dung. Larger beetles require larger amounts of dung which may not be available due to the fast desiccation of the dung pads in these conditions. Soil hardness and dryness negatively affect the tunnelers. Species able to tolerate open pasture conditions were extremely abundant. The reduction in the number of dung beetles affected the efficiency of their ecological roles and it was found that dung removal and burial declined. Dung removal and burial by dung beetles result in ecological benefits such as soil aeration and fertilization. These benefits lead to improved nutrient cycling and uptake by plants, increase in pasture quality, biological control of pest flies and intestinal parasites and secondary seed dispersal. Therefore, their role in the ecosystem is essential.[7]
Taxonomy

The subfamily is split into about 12 extant tribes.[2][8] These can be grouped by their distribution, though the present classification is expected to require major revision based on recent phylogenetic analyses.[9]
Tribes with a global distribution

Ateuchini - about 20 genera including:
Pedaria
Sarophorus

Sarophorus costatus

Sarophorus costatus
Pedaria nigra

Pedaria nigra

Coprini (incl. Dichotomiini) - about 20 genera including:
Copris Geoffroy, 1762
Dichotomius
Heliocopris
Metacatharsius

Copris elphenor female

Copris elphenor female
Copris elphenor male

Copris elphenor male

Deltochilini (= Canthonini) - about 120 genera including:
Anachalcos Hope, 1837
Canthon Hoffmannsegg, 1817
Circellium Latreille, 1825
Deltochilum
Dicranocara Frolov and Scholtz, 2003
Epirinus Reiche, 1841
Parachorius
Versicorpus Deschodt Davis and Scholtz, 2011

Anachalcos convexus

Anachalcos convexus
Canthon smaragdulus

Canthon smaragdulus
Circellium bacchus

Circellium bacchus

Onthophagini - about 40 genera including:
Hyalonthophagus
Onthophagus
Proagoderus

Hyalonthophagus alcyonides

Hyalonthophagus alcyonides
Onthophagus binodis

Onthophagus binodis
Onthophagus gazella

Onthophagus gazella
Proagoderus imperator

Proagoderus imperator

Predominantly Old World (New World presence likely represents rather recent dispersal)

Oniticellini (incl. Eurysternini) - 16 genera including:
Euoniticellus Janssens, 1953
Oniticellus Serville, 1825
Eurysternus
Sisyphini - three genera (sometimes placed in the Scarabaeini):
Nesosisyphus
Neosisyphus
Sisyphus

Old World

Gymnopleurini - four genera (sometimes placed in the Scarabaeini):
Allogymnopleurus
Garreta Janssens, 1940
Gymnopleurus Illiger, 1803
Paragymnopleurus
Scarabaeini - selected genera:
Scarabaeus (Kheper is a subgenus)
Onitini - selected genera:
Bubas Mulsant, 1842
Cheironitis Lansberge, 1875
Onitis Fabricius, 1798

Cheironitis scabrosus

Cheironitis scabrosus
Chironitis indicus

Chironitis indicus

New World

Eucraniini - four genera:
Anomiopsoides
Ennearabdus
Eucranium
Glyphoderus
Phanaeini - 12 genera including:
Oxysternon
Phanaeus

References

Tarasov, Sergei; Vaz-de-Mello, Fernando Z.; Krell, Frank-Thorsten; Dimitrov, Dimitar (2016). "A review and phylogeny of Scarabaeine dung beetle fossils (Coleoptera: Scarabaeidae: Scarabaeinae), with the description of two Canthochilum species from Dominican amber". PeerJ. 4: e1988. doi:10.7717/peerj.1988. PMC 4986599. PMID 27547512.
Bouchard, P.; Bousquet, Y.; Davies, A.; Alonso-Zarazaga, M.; Lawrence, J.; Lyal, C.; Newton, A.; Reid, C.; Schmitt, M.; Ślipiński, A.; Smith, A. (2011). "Family-group names in Coleoptera (Insecta)". ZooKeys (88): 1–972. doi:10.3897/zookeys.88.807. PMC 3088472. PMID 21594053.
Louzada, J; Lima, A; Matavelli, R; Zambaldi, L; Barlow, J (2010). "Community structure of dung beetles in Amazonian savannas: role of fire disturbance, vegetation and landscape structure". Landscape Ecology. 25 (4): 631–641. doi:10.1007/s10980-010-9448-3. S2CID 23269300.
Braga, R; Korasaki, V; Andresen, E; Louzada, J (2013). "Dung Beetle Community and Functions along a Habitat-Disturbance Gradient in the Amazon: A Rapid Assessment of Ecological Functions Associated to Biodiversity". PLOS ONE. 8 (2): e57786. doi:10.1371/journal.pone.0057786. PMC 3583983. PMID 23460906.
Gill, Bruce. "Scarabaeinae". Generic Guide to New World Scarab Beetles. UNL State Museum. Retrieved 10 October 2017.
Liberal, C; Farias, A; Meiado, M; Filgueiras, B; Iannuzzi, L (2011). "). How Habitat Change and Rainfall Affect Dung Beetle Diversity in Caatinga, a Brazilian Semi-Arid Ecosystem". Journal of Insect Science. 11 (114): 114. doi:10.1673/031.011.11401. PMC 3281362. PMID 22224924.
Horgan, F (2008). "Dung beetle assemblages in forests and pastures of El Salvador: a functional comparison". Biodiversity and Conservation. 17 (12): 2961–2978. doi:10.1007/s10531-008-9408-2. S2CID 6996933.
Tarasov, S.I. (2017). "A cybertaxonomic revision of the new dung beetle tribe Parachoriini (Coleoptera: Scarabaeidae: Scarabaeinae) and its phylogenetic assessment using molecular and morphological data". Zootaxa. 4329 (2): 101–149. doi:10.11646/zootaxa.4329.2.1. PMID 29242487.
Tarasov, Sergei; Génier, François (17 March 2015). "Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters". PLOS ONE. 10 (3): e0116671. doi:10.1371/journal.pone.0116671. PMC 4363793. PMID 25781019.

Insects, Fine Art Prints

Insects Images

Biology Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World