Fine Art

.

In[37]:=

"Dodecahedron_2.gif"

Out[37]=

"Dodecahedron_3.gif"

In[38]:=

"Dodecahedron_4.gif"

Out[38]=

"Dodecahedron_5.gif"

In[39]:=

"Dodecahedron_6.gif"

Out[39]=

"Dodecahedron_7.gif"

In[40]:=

"Dodecahedron_8.gif"

Out[40]=

"Dodecahedron_9.gif"

In[41]:=

"Dodecahedron_10.gif"

Out[41]=

"Dodecahedron_11.gif"

In[42]:=

"Dodecahedron_12.gif"

Out[42]=

"Dodecahedron_13.gif"

In[43]:=

"Dodecahedron_14.gif"

Out[43]=

"Dodecahedron_15.gif"

In[44]:=

"Dodecahedron_16.gif"

Out[44]=

"Dodecahedron_17.gif"

In[45]:=

"Dodecahedron_18.gif"

Out[45]//InputForm=

Graphics3D[GraphicsComplex[{{-Sqrt[1 + 2/Sqrt[5]], 0,
    Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0]}, {Sqrt[1 + 2/Sqrt[5]], 0,
    Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0],
    (-3 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0], (3 + Sqrt[5])/4,
    Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0]}, {Sqrt[5/8 + 11/(8*Sqrt[5])],
    (-1 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0]},
   {Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3,
     0]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (-1 - Sqrt[5])/4,
    Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0],
    (1 + Sqrt[5])/4, Sqrt[5/8 + 11/(8*Sqrt[5])]}, {-Sqrt[1 + 2/Sqrt[5]]/2, -1/2,
    Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {-Sqrt[1 + 2/Sqrt[5]]/2, 1/2,
    Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2,
    Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2,
    Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Sqrt[(5 + Sqrt[5])/10], 0,
    Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0],
    (-1 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]},
   {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (1 + Sqrt[5])/4,
    Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]}, {Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0], 0,
    Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0],
    (-1 - Sqrt[5])/4, Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], (1 + Sqrt[5])/4,
    Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {Sqrt[1/8 + 1/(8*Sqrt[5])],
    (-3 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]},
   {Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2,
     0]}}, Polygon[{{15, 10, 9, 14, 1}, {2, 6, 12, 11, 5}, {5, 11, 7, 3, 19},
    {11, 12, 8, 16, 7}, {12, 6, 20, 4, 8}, {6, 2, 13, 18, 20}, {2, 5, 19, 17, 13},
    {4, 20, 18, 10, 15}, {18, 13, 17, 9, 10}, {17, 19, 3, 14, 9},
    {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1}}]]]

In[46]:=

"Dodecahedron_19.gif"

Out[46]=

"Dodecahedron_20.gif"

In[47]:=

"Dodecahedron_21.gif"

Out[47]=

"Dodecahedron_22.gif"

In[48]:=

"Dodecahedron_23.gif"

Out[48]=

"Dodecahedron_24.gif"

Platonic Polyhedra

Dodecahedron 2-Compound
Dodecahedron 5-Compound
Dodecahedron 6-Compound
Dodecahedron-Icosahedron Compound

Geometry

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Hellenica World - Scientific Library