.
Dodecahedron 6-Compound
In[159]:=
Out[159]=
In[160]:=
Out[160]=
In[161]:=
Out[161]=
In[162]:=
Out[162]=
In[163]:=
Out[163]=
In[164]:=
Out[164]=
In[165]:=
Out[165]=
In[166]:=
Out[166]//InputForm=
Graphics3D[GraphicsComplex[{{Root[5 - 25*#1^2 + #1^4 & , 2, 0]/10, (-3 - Sqrt[5])/4, Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Root[5 - 25*#1^2 + #1^4 & , 2, 0]/10, (3 + Sqrt[5])/4, Sqrt[1/8 + 11/(40*Sqrt[5])]},
{Sqrt[1/8 - 11/(40*Sqrt[5])], (-3 - Sqrt[5])/4, -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[1/8 - 11/(40*Sqrt[5])], (3 + Sqrt[5])/4, -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (-1 - Sqrt[5])/4, Sqrt[5/8 + 11/(8*Sqrt[5])]},
{Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (1 + Sqrt[5])/4, Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Sqrt[1/8 - 1/(8*Sqrt[5])], (-1 - Sqrt[5])/4, Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {Sqrt[1/8 - 1/(8*Sqrt[5])], (1 + Sqrt[5])/4, Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]},
{-Sqrt[5 - 2*Sqrt[5]]/10, -1/2 - 2/Sqrt[5], Sqrt[1/40 - 1/(40*Sqrt[5])]}, {-Sqrt[5 - 2*Sqrt[5]]/10, 1/2 + 2/Sqrt[5], Sqrt[1/40 - 1/(40*Sqrt[5])]}, {Sqrt[5 - 2*Sqrt[5]]/10, -1/2 - 2/Sqrt[5], -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10},
{Sqrt[5 - 2*Sqrt[5]]/10, 1/2 + 2/Sqrt[5], -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10}, {Root[1 - 25*#1^2 + 125*#1^4 & , 2, 0], (-5 - 3*Sqrt[5])/10, -Sqrt[(65 + 19*Sqrt[5])/2]/10},
{Root[1 - 25*#1^2 + 125*#1^4 & , 2, 0], (5 + 3*Sqrt[5])/10, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {Sqrt[1/10 - 1/(10*Sqrt[5])], (-5 - 3*Sqrt[5])/10, Sqrt[13/40 + 19/(40*Sqrt[5])]}, {Sqrt[1/10 - 1/(10*Sqrt[5])], (5 + 3*Sqrt[5])/10, Sqrt[13/40 + 19/(40*Sqrt[5])]},
{-Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10, (-5 - Sqrt[5])/20, -Sqrt[41/40 + 71/(40*Sqrt[5])]}, {-Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10, (-3*(5 + Sqrt[5]))/20, Sqrt[17/40 + 31/(40*Sqrt[5])]},
{-Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10, (5 + Sqrt[5])/20, -Sqrt[41/40 + 71/(40*Sqrt[5])]}, {-Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10, (3*(5 + Sqrt[5]))/20, Sqrt[17/40 + 31/(40*Sqrt[5])]},
{Sqrt[1/40 - 1/(40*Sqrt[5])], (-5 - Sqrt[5])/20, Sqrt[41/40 + 71/(40*Sqrt[5])]}, {Sqrt[1/40 - 1/(40*Sqrt[5])], (-3*(5 + Sqrt[5]))/20, -Sqrt[(85 + 31*Sqrt[5])/2]/10}, {Sqrt[1/40 - 1/(40*Sqrt[5])], (5 + Sqrt[5])/20, Sqrt[41/40 + 71/(40*Sqrt[5])]},
{Sqrt[1/40 - 1/(40*Sqrt[5])], (3*(5 + Sqrt[5]))/20, -Sqrt[(85 + 31*Sqrt[5])/2]/10}, {-Sqrt[(5 + Sqrt[5])/2]/10, (-5 - 3*Sqrt[5])/20, Sqrt[37/40 + 59/(40*Sqrt[5])]}, {-Sqrt[(5 + Sqrt[5])/2]/10, (5 + 3*Sqrt[5])/20, Sqrt[37/40 + 59/(40*Sqrt[5])]},
{Sqrt[(5 + Sqrt[5])/2]/10, (-5 - 3*Sqrt[5])/20, -Sqrt[37/40 + 59/(40*Sqrt[5])]}, {Sqrt[(5 + Sqrt[5])/2]/10, (5 + 3*Sqrt[5])/20, -Sqrt[37/40 + 59/(40*Sqrt[5])]}, {-Sqrt[5 + 2*Sqrt[5]]/10, -1/(2*Sqrt[5]), Sqrt[41/40 + 71/(40*Sqrt[5])]},
{-Sqrt[5 + 2*Sqrt[5]]/10, 1/(2*Sqrt[5]), Sqrt[41/40 + 71/(40*Sqrt[5])]}, {Sqrt[5 + 2*Sqrt[5]]/10, -1/(2*Sqrt[5]), -Sqrt[41/40 + 71/(40*Sqrt[5])]}, {Sqrt[5 + 2*Sqrt[5]]/10, 1/(2*Sqrt[5]), -Sqrt[41/40 + 71/(40*Sqrt[5])]},
{-Sqrt[(5 + Sqrt[5])/2]/5, 0, -Sqrt[41/40 + 71/(40*Sqrt[5])]}, {Sqrt[(5 + Sqrt[5])/2]/5, 0, Sqrt[41/40 + 71/(40*Sqrt[5])]}, {-Sqrt[25 + 2*Sqrt[5]]/10, -1/2 - 1/Sqrt[5], Sqrt[17/40 + 31/(40*Sqrt[5])]},
{-Sqrt[25 + 2*Sqrt[5]]/10, 1/2 + 1/Sqrt[5], Sqrt[17/40 + 31/(40*Sqrt[5])]}, {Sqrt[25 + 2*Sqrt[5]]/10, -1/2 - 1/Sqrt[5], -Sqrt[(85 + 31*Sqrt[5])/2]/10}, {Sqrt[25 + 2*Sqrt[5]]/10, 1/2 + 1/Sqrt[5], -Sqrt[(85 + 31*Sqrt[5])/2]/10},
{Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0], (-3 - Sqrt[5])/4, Sqrt[1/8 - 1/(8*Sqrt[5])]}, {Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0], (3 + Sqrt[5])/4, Sqrt[1/8 - 1/(8*Sqrt[5])]}, {Sqrt[1/8 + 1/(8*Sqrt[5])], (-3 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]},
{Sqrt[1/8 + 1/(8*Sqrt[5])], (3 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]}, {-Sqrt[1/8 + 11/(40*Sqrt[5])], (-5 - Sqrt[5])/20, -Sqrt[37/40 + 59/(40*Sqrt[5])]}, {-Sqrt[1/8 + 11/(40*Sqrt[5])], (-3*(5 + Sqrt[5]))/20, -Sqrt[(65 + 19*Sqrt[5])/2]/10},
{-Sqrt[1/8 + 11/(40*Sqrt[5])], (5 + Sqrt[5])/20, -Sqrt[37/40 + 59/(40*Sqrt[5])]}, {-Sqrt[1/8 + 11/(40*Sqrt[5])], (3*(5 + Sqrt[5]))/20, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {Sqrt[1/8 + 11/(40*Sqrt[5])], (-5 - Sqrt[5])/20, Sqrt[37/40 + 59/(40*Sqrt[5])]},
{Sqrt[1/8 + 11/(40*Sqrt[5])], (-3*(5 + Sqrt[5]))/20, Sqrt[13/40 + 19/(40*Sqrt[5])]}, {Sqrt[1/8 + 11/(40*Sqrt[5])], (5 + Sqrt[5])/20, Sqrt[37/40 + 59/(40*Sqrt[5])]}, {Sqrt[1/8 + 11/(40*Sqrt[5])], (3*(5 + Sqrt[5]))/20, Sqrt[13/40 + 19/(40*Sqrt[5])]},
{-Sqrt[5 + 2*Sqrt[5]]/5, 0, Sqrt[37/40 + 59/(40*Sqrt[5])]}, {Sqrt[5 + 2*Sqrt[5]]/5, 0, -Sqrt[37/40 + 59/(40*Sqrt[5])]}, {-Sqrt[2*(5 + Sqrt[5])]/5, (-5 - 3*Sqrt[5])/10, Sqrt[1/40 - 1/(40*Sqrt[5])]},
{-Sqrt[2*(5 + Sqrt[5])]/5, (5 + 3*Sqrt[5])/10, Sqrt[1/40 - 1/(40*Sqrt[5])]}, {Sqrt[2*(5 + Sqrt[5])]/5, (-5 - 3*Sqrt[5])/10, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10}, {Sqrt[2*(5 + Sqrt[5])]/5, (5 + 3*Sqrt[5])/10, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10},
{-Sqrt[(65 + 19*Sqrt[5])/2]/10, (-3*(5 + Sqrt[5]))/20, Sqrt[1/8 + 11/(40*Sqrt[5])]}, {-Sqrt[(65 + 19*Sqrt[5])/2]/10, (-1 - Sqrt[5])/4, -Sqrt[(85 + 31*Sqrt[5])/2]/10}, {-Sqrt[(65 + 19*Sqrt[5])/2]/10, (1 + Sqrt[5])/4, -Sqrt[(85 + 31*Sqrt[5])/2]/10},
{-Sqrt[(65 + 19*Sqrt[5])/2]/10, (3*(5 + Sqrt[5]))/20, Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[13/40 + 19/(40*Sqrt[5])], (-3*(5 + Sqrt[5]))/20, -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[13/40 + 19/(40*Sqrt[5])], (-1 - Sqrt[5])/4, Sqrt[17/40 + 31/(40*Sqrt[5])]},
{Sqrt[13/40 + 19/(40*Sqrt[5])], (1 + Sqrt[5])/4, Sqrt[17/40 + 31/(40*Sqrt[5])]}, {Sqrt[13/40 + 19/(40*Sqrt[5])], (3*(5 + Sqrt[5]))/20, -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {-Sqrt[1 + 2/Sqrt[5]]/2, -1/2, Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]},
{-Sqrt[1 + 2/Sqrt[5]]/2, 1/2, Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, Sqrt[5/8 + 11/(8*Sqrt[5])]},
{Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0], 0, Sqrt[5/8 + 11/(8*Sqrt[5])]}, {Sqrt[(5 + Sqrt[5])/10], 0, Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0]}, {-Root[5 - 65*#1^2 + #1^4 & , 4, 0]/10, (-5 - 7*Sqrt[5])/20, -Sqrt[1/8 + 11/(40*Sqrt[5])]},
{-Root[5 - 65*#1^2 + #1^4 & , 4, 0]/10, (5 + 7*Sqrt[5])/20, -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[13/40 + 29/(40*Sqrt[5])], (-5 - 7*Sqrt[5])/20, Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[13/40 + 29/(40*Sqrt[5])], (5 + 7*Sqrt[5])/20, Sqrt[1/8 + 11/(40*Sqrt[5])]},
{-Sqrt[(85 + 31*Sqrt[5])/2]/10, (-3*(5 + Sqrt[5]))/20, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10}, {-Sqrt[(85 + 31*Sqrt[5])/2]/10, (-1 - Sqrt[5])/4, Sqrt[13/40 + 19/(40*Sqrt[5])]}, {-Sqrt[(85 + 31*Sqrt[5])/2]/10, (1 + Sqrt[5])/4, Sqrt[13/40 + 19/(40*Sqrt[5])]},
{-Sqrt[(85 + 31*Sqrt[5])/2]/10, (3*(5 + Sqrt[5]))/20, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10}, {Sqrt[17/40 + 31/(40*Sqrt[5])], (-3*(5 + Sqrt[5]))/20, Sqrt[1/40 - 1/(40*Sqrt[5])]},
{Sqrt[17/40 + 31/(40*Sqrt[5])], (-1 - Sqrt[5])/4, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {Sqrt[17/40 + 31/(40*Sqrt[5])], (1 + Sqrt[5])/4, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {Sqrt[17/40 + 31/(40*Sqrt[5])], (3*(5 + Sqrt[5]))/20, Sqrt[1/40 - 1/(40*Sqrt[5])]},
{-Sqrt[5/8 + 41/(40*Sqrt[5])], (-5 - 3*Sqrt[5])/20, Sqrt[13/40 + 19/(40*Sqrt[5])]}, {-Sqrt[5/8 + 41/(40*Sqrt[5])], (5 + 3*Sqrt[5])/20, Sqrt[13/40 + 19/(40*Sqrt[5])]}, {Sqrt[5/8 + 41/(40*Sqrt[5])], (-5 - 3*Sqrt[5])/20, -Sqrt[(65 + 19*Sqrt[5])/2]/10},
{Sqrt[5/8 + 41/(40*Sqrt[5])], (5 + 3*Sqrt[5])/20, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {Root[5 - 25*#1^2 + #1^4 & , 1, 0]/5, -(1/Sqrt[5]), -Sqrt[(85 + 31*Sqrt[5])/2]/10}, {Root[5 - 25*#1^2 + #1^4 & , 1, 0]/5, 1/Sqrt[5], -Sqrt[(85 + 31*Sqrt[5])/2]/10},
{Sqrt[1/2 + 11/(10*Sqrt[5])], -(1/Sqrt[5]), Sqrt[17/40 + 31/(40*Sqrt[5])]}, {Sqrt[1/2 + 11/(10*Sqrt[5])], 1/Sqrt[5], Sqrt[17/40 + 31/(40*Sqrt[5])]}, {-Sqrt[65 + 22*Sqrt[5]]/10, -1/(2*Sqrt[5]), Sqrt[17/40 + 31/(40*Sqrt[5])]},
{-Sqrt[65 + 22*Sqrt[5]]/10, 1/(2*Sqrt[5]), Sqrt[17/40 + 31/(40*Sqrt[5])]}, {Sqrt[65 + 22*Sqrt[5]]/10, -1/(2*Sqrt[5]), -Sqrt[(85 + 31*Sqrt[5])/2]/10}, {Sqrt[65 + 22*Sqrt[5]]/10, 1/(2*Sqrt[5]), -Sqrt[(85 + 31*Sqrt[5])/2]/10},
{Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (-1 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]}, {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (1 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]},
{Sqrt[5/8 + 11/(8*Sqrt[5])], (-1 - Sqrt[5])/4, Sqrt[1/8 - 1/(8*Sqrt[5])]}, {Sqrt[5/8 + 11/(8*Sqrt[5])], (1 + Sqrt[5])/4, Sqrt[1/8 - 1/(8*Sqrt[5])]}, {-Sqrt[37/40 + 59/(40*Sqrt[5])], (-5 - Sqrt[5])/20, Sqrt[1/8 + 11/(40*Sqrt[5])]},
{-Sqrt[37/40 + 59/(40*Sqrt[5])], (5 + Sqrt[5])/20, Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[37/40 + 59/(40*Sqrt[5])], (-5 - Sqrt[5])/20, -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {Sqrt[37/40 + 59/(40*Sqrt[5])], (5 + Sqrt[5])/20, -Sqrt[1/8 + 11/(40*Sqrt[5])]},
{-Sqrt[29/40 + 61/(40*Sqrt[5])], (5 - Sqrt[5])/20, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {-Sqrt[29/40 + 61/(40*Sqrt[5])], (-5 + Sqrt[5])/20, -Sqrt[(65 + 19*Sqrt[5])/2]/10}, {Sqrt[29/40 + 61/(40*Sqrt[5])], (5 - Sqrt[5])/20, Sqrt[13/40 + 19/(40*Sqrt[5])]},
{Sqrt[29/40 + 61/(40*Sqrt[5])], (-5 + Sqrt[5])/20, Sqrt[13/40 + 19/(40*Sqrt[5])]}, {(-2*Sqrt[5 + 2*Sqrt[5]])/5, -(1/Sqrt[5]), -Sqrt[1/8 + 11/(40*Sqrt[5])]}, {(-2*Sqrt[5 + 2*Sqrt[5]])/5, 1/Sqrt[5], -Sqrt[1/8 + 11/(40*Sqrt[5])]},
{(2*Sqrt[5 + 2*Sqrt[5]])/5, -(1/Sqrt[5]), Sqrt[1/8 + 11/(40*Sqrt[5])]}, {(2*Sqrt[5 + 2*Sqrt[5]])/5, 1/Sqrt[5], Sqrt[1/8 + 11/(40*Sqrt[5])]}, {-Sqrt[41/40 + 71/(40*Sqrt[5])], (-5 - Sqrt[5])/20, Sqrt[1/40 - 1/(40*Sqrt[5])]},
{-Sqrt[41/40 + 71/(40*Sqrt[5])], (5 + Sqrt[5])/20, Sqrt[1/40 - 1/(40*Sqrt[5])]}, {Sqrt[41/40 + 71/(40*Sqrt[5])], (-5 - Sqrt[5])/20, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10},
{Sqrt[41/40 + 71/(40*Sqrt[5])], (5 + Sqrt[5])/20, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10}, {-Sqrt[85 + 38*Sqrt[5]]/10, -1/2, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10}, {-Sqrt[85 + 38*Sqrt[5]]/10, 1/2, -Root[5 - 5*#1^2 + #1^4 & , 3, 0]/10},
{Sqrt[85 + 38*Sqrt[5]]/10, -1/2, Sqrt[1/40 - 1/(40*Sqrt[5])]}, {Sqrt[85 + 38*Sqrt[5]]/10, 1/2, Sqrt[1/40 - 1/(40*Sqrt[5])]}, {-Sqrt[1 + 2/Sqrt[5]], 0, Sqrt[1/8 - 1/(8*Sqrt[5])]}, {Sqrt[1 + 2/Sqrt[5]], 0, Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0]}},
Polygon[{{67, 68, 6, 69, 5}, {66, 8, 70, 7, 65}, {41, 39, 95, 65, 7}, {97, 41, 7, 70, 120}, {120, 70, 8, 42, 98}, {96, 40, 42, 8, 66}, {96, 66, 65, 95, 119}, {40, 6, 68, 98, 42}, {96, 119, 69, 6, 40}, {119, 95, 39, 5, 69}, {97, 67, 5, 39, 41},
{97, 120, 98, 68, 67}, {110, 50, 26, 21, 89}, {107, 88, 19, 27, 44}, {27, 85, 79, 9, 44}, {27, 19, 38, 102, 85}, {19, 88, 78, 12, 38}, {107, 99, 84, 78, 88}, {107, 44, 9, 35, 99}, {26, 50, 12, 78, 84}, {21, 26, 84, 99, 35}, {21, 35, 9, 79, 89},
{110, 89, 79, 85, 102}, {110, 102, 38, 12, 50}, {63, 2, 77, 51, 34}, {58, 33, 52, 80, 3}, {80, 117, 62, 1, 3}, {80, 52, 81, 118, 117}, {52, 33, 59, 4, 81}, {58, 115, 116, 59, 33}, {58, 3, 1, 76, 115}, {77, 2, 4, 59, 116}, {51, 77, 116, 115, 76},
{51, 76, 1, 62, 34}, {63, 34, 62, 117, 118}, {63, 118, 81, 4, 2}, {23, 36, 100, 83, 25}, {17, 28, 86, 101, 37}, {101, 109, 48, 11, 37}, {101, 86, 82, 90, 109}, {86, 28, 46, 10, 82}, {17, 87, 108, 46, 28}, {17, 37, 11, 75, 87}, {100, 36, 10, 46, 108},
{83, 100, 108, 87, 75}, {83, 75, 11, 48, 25}, {23, 25, 48, 109, 90}, {23, 90, 82, 10, 36}, {47, 30, 91, 57, 15}, {45, 14, 64, 94, 31}, {94, 113, 55, 22, 31}, {94, 64, 74, 105, 113}, {64, 14, 54, 20, 74}, {45, 104, 112, 54, 14}, {45, 31, 22, 71, 104},
{91, 30, 20, 54, 112}, {57, 91, 112, 104, 71}, {57, 71, 22, 55, 15}, {47, 15, 55, 113, 105}, {47, 105, 74, 20, 30}, {106, 49, 29, 18, 73}, {103, 72, 24, 32, 43}, {32, 93, 61, 13, 43}, {32, 24, 56, 114, 93}, {24, 72, 60, 16, 56}, {103, 111, 92, 60, 72},
{103, 43, 13, 53, 111}, {29, 49, 16, 60, 92}, {18, 29, 92, 111, 53}, {18, 53, 13, 61, 73}, {106, 73, 61, 93, 114}, {106, 114, 56, 16, 49}}]]]
In[167]:=
Out[167]=
In[168]:=
Out[168]=
In[169]:=
Out[169]=
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License