Fine Art

.

In[193]:=

"DodecahedronIcosahedronCompound_2.gif"

Out[193]=

"DodecahedronIcosahedronCompound_3.gif"

In[194]:=

"DodecahedronIcosahedronCompound_4.gif"

Out[194]=

"DodecahedronIcosahedronCompound_5.gif"

In[195]:=

"DodecahedronIcosahedronCompound_6.gif"

Out[195]=

"DodecahedronIcosahedronCompound_7.gif"

In[196]:=

"DodecahedronIcosahedronCompound_8.gif"

Out[196]=

"DodecahedronIcosahedronCompound_9.gif"

In[197]:=

"DodecahedronIcosahedronCompound_10.gif"

Out[197]=

"DodecahedronIcosahedronCompound_11.gif"

In[198]:=

"DodecahedronIcosahedronCompound_12.gif"

Out[198]=

"DodecahedronIcosahedronCompound_13.gif"

In[199]:=

"DodecahedronIcosahedronCompound_14.gif"

Out[199]=

"DodecahedronIcosahedronCompound_15.gif"

In[200]:=

"DodecahedronIcosahedronCompound_16.gif"

Out[200]//InputForm=

Graphics3D[GraphicsComplex[{{0, 0, -Sqrt[(3*(3 + Sqrt[5]))/2]/2}, {0, 0, Sqrt[9/8 + (3*Sqrt[5])/8]},
   {Sqrt[1/8 - Sqrt[5]/24], (-3 - Sqrt[5])/4, Sqrt[1/8 + Sqrt[5]/24]}, {Sqrt[1/8 - Sqrt[5]/24], (3 + Sqrt[5])/4, Sqrt[1/8 + Sqrt[5]/24]},
   {-Sqrt[(3 + Sqrt[5])/6]/2, (-1 - Sqrt[5])/4, Sqrt[5/8 + (5*Sqrt[5])/24]}, {-Sqrt[(3 + Sqrt[5])/6]/2, (-1 - Sqrt[5])/4,
    -Sqrt[3/4 + Sqrt[5]/3]}, {-Sqrt[(3 + Sqrt[5])/6]/2, (1 + Sqrt[5])/4, Sqrt[5/8 + (5*Sqrt[5])/24]},
   {-Sqrt[(3 + Sqrt[5])/6]/2, (1 + Sqrt[5])/4, -Sqrt[3/4 + Sqrt[5]/3]}, {Sqrt[1/8 + Sqrt[5]/24], (-1 - Sqrt[5])/4, -Sqrt[(5*(3 + Sqrt[5]))/6]/2},
   {Sqrt[1/8 + Sqrt[5]/24], (-1 - Sqrt[5])/4, Sqrt[3/4 + Sqrt[5]/3]}, {Sqrt[1/8 + Sqrt[5]/24], (1 + Sqrt[5])/4, -Sqrt[(5*(3 + Sqrt[5]))/6]/2},
   {Sqrt[1/8 + Sqrt[5]/24], (1 + Sqrt[5])/4, Sqrt[3/4 + Sqrt[5]/3]}, {-Sqrt[7/24 + Sqrt[5]/8], (-3 - Sqrt[5])/4, 1/(2*Sqrt[3])},
   {-Sqrt[7/24 + Sqrt[5]/8], (3 + Sqrt[5])/4, 1/(2*Sqrt[3])}, {Sqrt[7/24 + Sqrt[5]/8], (-3 - Sqrt[5])/4, -1/(2*Sqrt[3])},
   {Sqrt[7/24 + Sqrt[5]/8], (3 + Sqrt[5])/4, -1/(2*Sqrt[3])}, {-Sqrt[(3 + Sqrt[5])/6], 0, -Sqrt[(5*(3 + Sqrt[5]))/6]/2},
   {-Sqrt[(3 + Sqrt[5])/6], 0, Sqrt[3/4 + Sqrt[5]/3]}, {Sqrt[(3 + Sqrt[5])/6], 0, Sqrt[5/8 + (5*Sqrt[5])/24]},
   {Sqrt[(3 + Sqrt[5])/6], 0, -Sqrt[3/4 + Sqrt[5]/3]}, {-Sqrt[(5*(3 + Sqrt[5]))/6]/2, (-1 - Sqrt[5])/4, -Sqrt[(3 + Sqrt[5])/6]/2},
   {-Sqrt[(5*(3 + Sqrt[5]))/6]/2, (1 + Sqrt[5])/4, -Sqrt[(3 + Sqrt[5])/6]/2}, {Sqrt[5/8 + (5*Sqrt[5])/24], (-1 - Sqrt[5])/4,
    Sqrt[1/8 + Sqrt[5]/24]}, {Sqrt[5/8 + (5*Sqrt[5])/24], (1 + Sqrt[5])/4, Sqrt[1/8 + Sqrt[5]/24]},
   {-Sqrt[3/4 + Sqrt[5]/3], -1/2, Sqrt[1/8 + Sqrt[5]/24]}, {-Sqrt[3/4 + Sqrt[5]/3], 1/2, Sqrt[1/8 + Sqrt[5]/24]},
   {Sqrt[3/4 + Sqrt[5]/3], -1/2, -Sqrt[(3 + Sqrt[5])/6]/2}, {Sqrt[3/4 + Sqrt[5]/3], 1/2, -Sqrt[(3 + Sqrt[5])/6]/2},
   {Root[1 - 21*#1^2 + 9*#1^4 & , 1, 0], 0, -1/(2*Sqrt[3])}, {Sqrt[(7 + 3*Sqrt[5])/6], 0, 1/(2*Sqrt[3])},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 2, 0], (-3 - Sqrt[5])/4, -Sqrt[(3 + Sqrt[5])/6]/2}, {Root[1 - 36*#1^2 + 144*#1^4 & , 2, 0], (3 + Sqrt[5])/4,
    -Sqrt[(3 + Sqrt[5])/6]/2}}, Polygon[{{7, 26, 25, 5, 2}, {1, 11, 28, 27, 9}, {9, 27, 23, 3, 31}, {27, 28, 24, 19, 23}, {28, 11, 32, 4, 24},
    {11, 1, 17, 22, 32}, {1, 9, 31, 21, 17}, {4, 32, 22, 26, 7}, {22, 17, 21, 25, 26}, {21, 31, 3, 5, 25}, {3, 23, 19, 2, 5}, {19, 24, 4, 7, 2},
    {18, 10, 12}, {6, 8, 20}, {10, 13, 15}, {16, 14, 12}, {20, 15, 6}, {8, 16, 20}, {15, 30, 10}, {30, 16, 12}, {18, 29, 13}, {18, 14, 29},
    {30, 15, 20}, {16, 30, 20}, {8, 6, 29}, {18, 13, 10}, {12, 14, 18}, {12, 10, 30}, {13, 29, 6}, {29, 14, 8}, {13, 6, 15}, {16, 8, 14}}]]]

In[201]:=

"DodecahedronIcosahedronCompound_17.gif"

Out[201]=

"DodecahedronIcosahedronCompound_18.gif"

In[202]:=

"DodecahedronIcosahedronCompound_19.gif"

Out[202]=

"DodecahedronIcosahedronCompound_20.gif"

In[203]:=

"DodecahedronIcosahedronCompound_21.gif"

Out[203]=

"DodecahedronIcosahedronCompound_22.gif"

Geometry

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Hellenica World - Scientific Library