Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Protostomia
Cladus: Ecdysozoa
Cladus: Panarthropoda
Phylum: Arthropoda
Subphylum: Chelicerata
Classis: Arachnida
Ordines (16 + 4†): Amblypygi – Araneae – †Haptopoda – Holothyrida – Ixodida – Mesostigmata – Opilioacarida – Opiliones – Palpigradi – †Phalangiotarbida – Pseudoscorpiones – Ricinulei – Sarcoptiformes – Schizomida – Scorpiones – Solifugae – Thelyphonida – †Trigonotarbida – Trombidiformes – †Uraraneida
Note:
The 6 ordines Holothyrida, Ixodida, Mesostigmata, Opilioacarida, Sarcoptiformes and Trombidiformes are sometimes grouped together as Acari, but there is no consensus on classification above ordinal level, making a Linnean classification difficult.
Name
Arachnida Cuvier, 1812
References
Blick, T. & Harvey, M.S. 2011. Worldwide catalogues and species numbers of the arachnid orders (Arachnida). Arachnologische mitteilungen 41: 41–43.
Dunlop, J.A. & Jekel, D. 2008. The oldest available fossil arachnid name. Palaeodiversity 1: 87–92. PDF.
Dunlop, J.A., Kotthoff, U., Hammel, J.U., Ahrens, J. & Harms, D. 2018. Arachnids in Bitterfeld amber: A unique fauna of fossils from the heart of Europe or simply old friends? Evolutionary Systematics 2: 31–44. DOI: 10.3897/evolsyst.2.22581 Reference page.
Dunlop, J.A. & Penney, D. 2012. Fossil arachnids. Monograph series volume 2. Siri Scientific Press, Manchester. ISBN 978-0-9567795-4-0
Gerlach, J. & Marusik, Y. (eds.) 2010. Arachnida and Myriapoda of the Seychelles islands. Siri Scientific Press, Manchester, UK. ISBN 978-0-9558636-8-4 ISBN 0-955-86368-6 [not seen]
Harvey, M.S. 2003. Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, Australia. ISBN 0-643-06805-8 Google books
Harvey, M.S. 2007. The smaller arachnid orders: diversity, descriptions and distributions from Linnaeus to the present (1758 to 2007). Pp. 363–380 In: Zhang, Z.-Q. & Shear, W.A. (eds) Linnaeus tercentenary: progress in invertebrate taxonomy. Zootaxa 1668: 1–766. Abstract & excerpt (PDF).
Marusik, Y.M. & Li, S. 2011. About types of arachnids (Araneae, Opiliones, Pseudoscorpiones) described by E. Schenkel from China in 1953. Zootaxa 3002: 59–61. Preview (PDF).
Marusik, Y.M. & Omelko, M.M. 2012. A long-awaited book about fossil arachnids Book review: Dunlop JA, Penney D (2012) Fossil Arachnids. Monograph Series Volume 2. Siri Scientific Press, Manchester, 192 pp. ZooKeys 183: 85–88. DOI: 10.3897/zookeys.183.3200
Moreira, T.D.S. et al. 2010. Annotated check list of Arachnida type specimens deposited in the Museu Nacional, Rio de Janeiro. II—Araneae. Zootaxa 2588: 1–91. Preview (PDF).
Reboleira, A.S.P.S. et al. 2012: Catalogue of the type material in the entomological collection of the University of La Laguna (Canary Islands, Spain). I. Arachnida. Zootaxa 3556: 61–79. Preview Reference page.
Saturnino, R. et al. 2009. Catalogue of type specimens of invertebrates in the collection of the Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. V. Arachnida: Araneae, Opiliones and Scorpiones. Zootaxa 2247: 51–67. Abstract & excerpt (PDF).
Additional references
Cameron, E. & Buddle, C.M. 2019. Pseudoscorpiones and Scorpiones of Canada. Pp 67–72 In Langor, D.W. & Sheffield, C.S. (eds.). The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 520 pp. Reference page. . DOI: 10.3897/zookeys.819.27121 Reference page.
Dean, D.A. 2016. Catalogue of Texas spiders. ZooKeys 570: 1–703. DOI: 10.3897/zookeys.570.6095.Reference page.
Vernacular names
беларуская: Павукападобныя
български: Паякообразни
čeština: Pavoukovci
Deutsch: Spinnentiere
Ελληνικά: Αραχνίδια
English: Arachnids
español: Arácnidos
suomi: Hämähäkkieläimet
Nordfriisk: Koonkern
français: Arachnides
hrvatski: Paučnjaci
magyar: Pókszabásúak
հայերեն: Սարդակերպներ
italiano: Aracnidi
日本語: クモ綱, 蜘蛛綱
ქართული: ობობასნაირნი
한국어: 거미강
Nederlands: Spinachtigen
norsk: Edderkoppdyr
polski: Pajęczaki
português: Aracnídeos
română: Arahnide
русский: Паукообразные
தமிழ்: எண்காலிகள்
Türkçe: Örümceğimsiler
中文: 蛛形纲
-----------
Arachnids are a class (Arachnida) of joint-legged invertebrate animals in the subphylum Chelicerata. All arachnids have eight legs, although in some species the front pair may convert to a sensory function. The term is derived from the Greek word ἀράχνη (aráchnē), meaning "spider".[2]
Almost all arachnids are terrestrial. However, some inhabit freshwater environments and, with the exception of the pelagic zone, marine environments as well. They comprise over 100,000 named species, including spiders, scorpions, harvestmen, ticks, mites and solifugaes.[3]
Anatomy
Almost all adult arachnids have four pairs of legs, and arachnids may be easily distinguished from insects by this fact, since insects have six legs. However, arachnids also have two further pairs of appendages that have become adapted for feeding, defense, and sensory perception. The first pair, the chelicerae, serve in feeding and defense. The next pair of appendages, the pedipalps have been adapted for feeding, locomotion, and/or reproductive functions. In Solifugae, the palps are quite leg-like, so that these animals appear to have ten legs. The larvae of mites and Ricinulei have only six legs; the fourth pair appears when they moult into nymphs. However, there are also adult mites with six, or even four legs.[4]
Arachnids are further distinguished from insects by the fact they have no antennae or wings. Their body is organized into two tagma called the prosoma, or cephalothorax, and the opisthosoma, or abdomen. The cephalothorax is derived from the fusion of the cephalon (head) and the thorax, and is usually covered by a single, unsegmented carapace. The abdomen is segmented in the more primitive forms, but varying degrees of fusion between the segments occur in many groups. It is typically divided into a preabdomen and postabdomen, although this is only clearly visible in scorpions, and in some orders, such as the Acari, the abdominal sections are completely fused.[5]
Like all arthropods, arachnids have an exoskeleton, and they also have an internal structure of cartilage-like tissue called the endosternite, to which certain muscle groups are attached. The endosternite is even calcified in some Opiliones[6].
Physiology
There are some important modifications that are particularly important for the terrestrial lifestyle of an arachnid, such as internal respiratory surfaces in the form of tracheae, or modification of the book gill into a book lung, an internal series of vascular lamellae used for gas exchange with the air. While the tracheae are often individual systems of tubes, similar to those in insects, ricnuleids, pseudoscorpions, and some spiders possess sieve tracheae, in which several tubes arise in a bundle from a small chamber connected to the spiracle. This type of tracheal system has almost certainly evolved from the book lungs, and indicates that the tracheae of arachnids are not homologous with those of insects.[7]
Further adaptations to terrestrial life are appendages modified for more efficient locomotion on land, internal fertilisation, special sensory organs, and water conservation enhanced by efficient excretory structures as well as a waxy layer covering the cuticle.
The excretory glands of arachnids include up to four pairs of coxal glands along the side of the prosoma, and one or two pairs of Malpighian tubules, emptying into the gut. Many arachnids have only one or the other type of excretory gland, although several do have both. The primary nitrogenous waste product in arachnids is guanine.[7]
The blood of arachnids is variable in composition, depending on the mode of respiration. Arachnids with an efficient tracheal system do not need to transport oxygen in the blood, and may have a reduced circulatory system. In scorpions and some spiders, however, the blood contains haemocyanin, a copper-based pigment with a similar function to haemoglobin in vertebrates. The heart is located in the forward part of the abdomen, and may or may not be segmented. Some mites have no heart at all.[7]
Diet and digestive system
Arachnids are mostly carnivorous, feeding on the pre-digested bodies of insects and other small animals. Only in the harvestmen and among mites, such as the house dust mite, is there ingestion of solid food particles, and thus exposure to internal parasites[8], although it is not unusual for spiders to eat their own silk. Several groups secrete venom from specialized glands to kill prey or enemies. Several mites are parasites, some of which are carriers of disease.
Arachnids pour digestive juices produced in their stomachs over their prey after killing it with their pedipalps and chelicerae. The digestive juices rapidly turn the prey into a broth of nutrients which the arachnid sucks into a pre-buccal cavity located immediately in front of the mouth. Behind the mouth is a muscular, sclerotised pharynx, which acts as a pump, sucking the food through the mouth and on into the oesophagus and stomach. In some arachnids, the oesophagus also acts as an additional pump.
The stomach is tubular in shape, with multiple diverticula extending throughout the body. The stomach and its diverticula both produce digestive enzymes and absorb nutrients from the food. It extends through most of the body, and connects to a short sclerotised intestine and anus in the hind part of the abdomen.[7]
Senses
Arachnids have two kinds of eyes, the lateral and median ocelli. The lateral ocelli evolved from compound eyes and may have a tapetum, which enhances the ability to collect light. The median ocelli develop from a transverse fold of the ectoderm. The ancestors of modern arachnids probably had both types, but modern ones often lack one type or the other.[8] The cornea of the eye also acts as a lens, and is continuous with the cuticle of the body. Beneath this is a transparent vitreous body, and then the retina and, if present, the tapetum. In most arachnids, the retina probably does not have enough light sensitive cells to allow the eyes to form a proper image.[7]
In addition to the eyes, almost all arachnids have two other types of sensory organs. The most important to most arachnids are the fine sensory hairs that cover the body and give the animal its sense of touch. These can be relatively simple, but many arachnids also possess more complex structures, called trichobothria.
Finally, slit sense organs are slit-like pits covered with a thin membrane. Inside the pit, a small hair touches the underside of the membrane, and detects its motion. Slit sense organs are believed to be involved in proprioception, and possibly also hearing.[7]
Reproduction
Arachnids may have one or two gonads, which are located in the abdomen. The genital opening is usually located on the underside of the second abdominal segment. In most species, the male transfers sperm to the female in a package, or spermatophore. Complex courtship rituals have evolved in many arachnids to ensure the safe delivery of the sperm to the female.[7]
Arachnids usually lay yolky eggs, which hatch into immatures that resemble adults. Scorpions, however, are either ovoviviparous or viviparous, depending on species, and bear live young.
Systematics
Acarina
Acarina or Acari are a taxon of arachnids that contains mites and ticks. Its fossil history goes back to the Devonian era, although there is also a questionable Ordovician record. The Devonian era was the time frame in which certain species of animals developed legs. In most modern treatments, the Acari is considered a subclass of Arachnida and is composed of 2–3 orders or superorders: Acariformes, Parasitiformes, and Opilioacariformes. Most acarines are minute to small (e.g. 0.080–1.00 mm), but the giants of the Acari (some ticks and red velvet mites) may reach lengths of 10–20 mm. It is estimated that over 50,000 species have been described (as of 1999) and that a million or more species are currently living. The study of mites and ticks is called acarology.[10]
Only the faintest traces of primary segmentation remain in mites, the prosoma and opisthosoma being insensibly fused, and a region of flexible cuticle (the cirumcapitular furrow) separates the chelicerae and pedipalps from the rest of the body. This anterior body region is called the capitulum or gnathosoma and is also found in the Ricinulei. The remainder of the body is called the idiosoma and is unique to mites. Most adult mites have four pairs of legs, like other arachnids, but some have fewer. For example, gall mites like Phyllocoptes variabilis (superfamily Eriophyioidea) have a wormlike body with only two pairs of legs; some parasitic mites have only one or three pairs of legs in the adult stage. Larval and prelarval stages have a maximum of three pairs of legs; adult mites with only three pairs of legs may be called 'larviform'.
Acarine ontogeny consists of an egg, a prelarval stage (often absent), a larval stage (hexapod except in Eriophyoidea, which have only 2 pairs of legs), and a series of nymphal stages. Larvae (and prelarvae) have a maximum of 3 pairs of legs (legs are often reduced to stubs or absent in prelarvae); legs IV are added at the first nymphal stage.
Acarines live in practically every habitat, and include aquatic (freshwater and sea water) and terrestrial species. They outnumber other arthropods in the soil organic matter and detritus. Many are parasitic, and they affect both vertebrates and invertebrates. Most parasitic forms are external parasites, while the free living forms are generally predaceous and may even be used to control undesirable arthropods. Others are detritivores that help to break down forest litter and dead organic matter such as skin cells. Others still are plant feeders and may damage crops. Damage to crops is perhaps the most costly economic effect of mites, especially by the spider mites and their relatives (Tetranychoidea), earth mites (Penthaleidae), thread-footed mites (Tarsonemidae) and the gall and rust mites (Eriophyoidea). Some parasitic forms affect humans and other mammals, causing damage by their feeding, and can even be vectors of diseases such as scrub typhus and rickettsial pox. A well-known effect of mites on humans is their role as an allergen and the stimulation of asthma in people affected by the respiratory disease. The use of predatory mites (e.g. Phytoseiidae) in pest control and herbivorous mites that attack weeds are also of importance. An unquantified, but major positive contribution of the Acari is their normal functioning in ecosystems, especially their roles in the decomposer subsystem.[10]
Amblypygi
Amblypygids are also known as tailless whip scorpions or cave spiders. Approximately 5 families, 17 genera and 136 species have been described. They are found in tropical and subtropical regions worldwide. Some species are subterranean; many are nocturnal. During the day, they may hide under logs, bark, stones, or leaves. They prefer a humid environment. Amblypygids may range from 5 to 40 mm. Their bodies are broad and highly flattened and the first pair of legs (the first walking legs in most arachnid orders) are modified to act as sensory organs. (Compare solifugids, uropygids, and schizomids.) These very thin modified legs can extend several times the length of body. They have no silk glands or venomous fangs, but can have prominent pincer-like pedipalps. Amblypygids often move about sideways on their six walking legs, with one "whip" pointed in the direction of travel while the other probes on either side of them. Prey are located with these "whips", captured with pedipalps, then torn to pieces with chelicerae. Fossilised amblypygids have been found dating back to the Carboniferous period.
Amblypygids, particularly the species Phrynus marginemaculatus and Damon diadema, are thought to be one of the few species of arachnids that show signs of social behavior. Research conducted at Cornell University by entomologists suggests that mother amblypygids comfort their young by gently caressing the offspring with her feelers. Further, when two or more siblings were placed in an unfamiliar environment, such as a cage, they would seek each other out and gather back in a group.[11]
Araneae
Araneae, or spiders, are the most familiar of the arachnids, and the most numerous, if only described species are counted. All spiders produce silk, a thin, strong protein strand extruded by the spider from spinnerets most commonly found on the end of the abdomen. Many species use it to trap insects in webs, although there are many species that hunt freely. Silk can be used to aid in climbing, form smooth walls for burrows, build egg sacs, wrap prey, temporarily hold sperm, and even fly, among other applications.
All spiders except those in the families Uloboridae and Holarchaeidae, and in the suborder Mesothelae (together about 350 species) can inject venom to protect themselves or to kill and liquefy prey. Only about 200 species, however, have bites that can pose health problems to humans.[12] Many larger species' bites may be painful, but will not produce lasting health concerns.
Spiders are found all over the world, from the tropics to the Arctic, with some extreme species even living underwater in silken domes that they supply with air,[13] and on the tops of the highest mountains.
Haptopoda
Haptopoda is an extinct order known exclusively from a few specimens from the Upper Carboniferous of the United Kingdom. It is monotypic, i.e. has only one species: Plesiosiro madeleyi Pocock 1911. Relationships with other arachnids are obscure, but closest relatives may be the Amblypygi, Thelyphonida and Schizomida of the tetrapulmonate clade.[14]
Opiliones
Opiliones (better known as "harvestmen" or "daddy longlegs") are arachnids that are harmless to people and are known for their exceptionally long walking legs, compared to their body size. As of 2005[update], over 6,300 species of Phalangids have been discovered worldwide. The order Opiliones can be divided in four suborders: Cyphophthalmi, Eupnoi, Dyspnoi and Laniatores. Well-preserved fossils have been found in the 400-million year old Rhynie cherts of Scotland, which look surprisingly modern, indicating that the basic structure of the harvestmen hasn't changed much since then.
The difference between harvestmen and spiders is that in harvestmen the two main body sections (the abdomen with ten segments and cephalothorax, or prosoma and opisthosoma) are nearly joined, so that they appear to be one oval structure. In more advanced species, the first five abdominal segments are often fused into a dorsal shield called the scutum, which is normally fused with the carapace. Sometimes this shield is only present in males. The two most posterior abdominal segments can be reduced or separated in the middle on the surface to form two plates lying next to each other. The second pair of legs are longer than the others and works as antennae. They have a single pair of eyes in the middle of their heads, orientated sideways. They have a pair of prosomatic scent glands that secrete a peculiar smelling fluid when disturbed. Harvestmen do not have silk glands and do not possess poison glands, posing absolutely no danger to humans. They breathe through tracheae. Between the base of the fourth pair of legs and the abdomen a pair of spiracles are located, one opening on each side. In more active species, spiracles are also found upon the tibia of the legs. They have a gonopore on the ventral cephalothorax, and the copulation is direct as the male has a penis (while the female has an ovipositor).
Typical body length does not exceed 7 mm (about ¼ in) even in the largest species. However, leg span is much larger and can exceed 160 mm (over 6 in). Most species live for a year. Many species are omnivorous, eating primarily small insects and all kinds of plant material and fungi; some are scavengers of the decays of any dead animal, bird dung and other fecal material. They are mostly nocturnal and coloured in hues of brown, although there are a number of diurnal species that have vivid patterns in yellow, green and black with varied reddish and blackish mottling and reticulation.
Palpigradi
Palpigradi, commonly known as "microwhip scorpions", are tiny cousins of the uropygid, or whip scorpion, no more than 3 mm in length. They have a thin, pale, segmented carapace that terminates in a whip-like flagellum, made up of 15 segments. The carapace is divided into two plates between the third and fourth leg set. They have no eyes. Some species have three pairs of book lungs, while others have no respiratory organs at all.[15] Approximately 80 species of Palpigradi have been described worldwide, all in the family Eukoeneniidae, which contains four genera.
They are believed to be predators like their larger relatives, feeding on minuscule insects in their habitat. Their mating habits are unknown, except that they lay only a few relatively large eggs at a time. Microwhip scorpions need a damp environment to survive, and they always hide from light, so they are commonly found in the moist earth under buried stones and rocks. They can be found on every continent, except in Arctic and Antarctic regions.
Phalangiotarbida
Phalangiotarbi (Haase, 1890) is an extinct arachnid order known exclusively from the Palaeozoic (Devonian to Permian) of Europe and North America.
The affinities of phalangiotarbids are obscure, with most authors favouring affinities with Opiliones (harvestmen) and/or Acari (mites and ticks). Phalangiotarbida has been recently proposed to be sister group to (Palpigradi+Tetrapulmonata): the taxon Megoperculata sensu Shultz (1990). (Pollitt et al., 2004).
Pseudoscorpions
Pseudoscorpions are small arthropods with a flat, pear-shaped body and pincers that resemble those of scorpions. They range from 2 to 8 mm (1⁄12 to 1/3 inch) in length.[16] The opisthosoma is made up of twelve segments, each guarded by plate-like tergites above and sternites below. The abdomen is short and rounded at the rear, rather than extending into a segmented tail and stinger like true scorpions. The colour of the body can be yellowish-tan to dark-brown, with the paired claws often a contrasting colour. They may have two, four or no eyes. They have two very long palpal chelae (pedipalps or pincers) that strongly resemble the pincers found on a scorpion. The pedipalps generally consist of an immobile "hand" and "finger", with a separate movable finger controlled by an adductor muscle. A venom gland and duct are usually located in the mobile finger; the poison is used to capture and immobilise the pseudoscorpion's prey. During digestion, pseudoscorpions pour a mildly corrosive fluid over the prey, then ingest the liquefied remains. Pseudoscorpions spin silk from a gland in their jaws to make disk-shaped cocoons for mating, molting, or waiting out cold weather. Another trait they share with their closest relatives, the spiders, is breathing through spiracles. Most spiders have one pair of spiracles, and one of book lungs, but pseudoscorpions do not have book lungs.
There are more than 2,000 species of pseudoscorpions recorded. They range worldwide, even in temperate to cold regions, but have their most dense and diverse populations in the tropics and subtropics. The fossil record of pseudoscorpions dates back over 380 million years, to the Devonian period, near the time when the first land-animal fossils appear.
During the elaborate mating dance, the male of some pseudoscorpion species pulls a female over a spermatophore previously laid upon a surface.[17] In other species, the male also pushes the sperm into the female genitals using the forelegs.[18] The female carries the fertilised eggs in a brood pouch attached to her abdomen, and the young ride on the mother for a short time after they hatch.[16] Up to two dozen young are hatched in a single brood; there may be more than one brood per year. The young go through three molts over the course of several years before reaching adulthood. Adult pseudoscorpions live 2 to 3 years. They are active in the warm months of the year, overwintering in silken coccoons when the weather grows cold.
Pseudoscorpions are generally beneficial to humans since they prey on clothes moth larvae, carpet beetle larvae, booklice, ants, mites, and small flies. They are small and inoffensive, and are rarely seen due to their size. They usually enter the home by "riding along" with larger insects (known as phoresy), or are brought in with firewood. They are often observed in bathrooms or laundry rooms, since they seek humidity. They may sometimes be found feeding on mites under the wing covers of certain beetles.
Ricinulei
Riniculei (hooded tickspiders) are 5–10 mm long. Their most notable feature is a "hood" that can be raised and lowered over the head; when lowered, it covers the mouth and the chelicerae. Ricinulei have no eyes. The pedipalps end in pincers that are small relative to their bodies, when compared to those of the related orders of scorpions and pseudoscorpions. The heavy-bodied abdomen forms a narrow pedicel, or waist, where it attaches to the prosoma. In males, the third pair of legs are modified to form copulatory organs. Malpighian tubules and a pair of coxal glands make up the excretory system. They have no lungs, as gas exchange takes place through the trachea.
Ricinulei are predators, feeding on other small arthropods. Little is known about their mating habits; the males have been observed using their modified third leg to transfer a spermatophore to the female. The eggs are carried under the mother's hood, until the young hatch into six-legged "larva", which later molt into their adult forms. Ricinulei require moisture to survive. Approximately 57 species of ricinuleids have been described worldwide, all in a single family that contains 3 genera.
Schizomida
Schizomida is an order of arachnids that tend to live in the top layer of soils. Schizomids present the prosoma covered by a large protopeltidium and smaller, paired, mesopeltidia and metapeltidia. There are no eyes. The opisthosoma is a smooth oval of 12 recognisable somites. The first is reduced and forms the pedicel. The last three are much constricted, forming the pygidium. The last somite bears the flagellum, which in this order is short and consists of not more than four segments.
The name means "split or cleaved middle", referring to the way the cephalothorax is divided into two separate plates. Like the related orders Uropygi, Amblypygi, and Solpugida, the schizomids use only six legs for walking, having modified their first two legs to serve as sensory organs. They also have large well-developed pedipalps (pincers) just behind the sensory legs.
Scorpions
Scorpions are characterised by a metasoma (tail) comprising six segments, the last containing the scorpion's anus and bearing the telson (the sting). The telson, in turn, consists of the vesicle, which holds a pair of venom glands and the hypodermic aculeus, the venom-injecting barb. The abdomen's front half, the mesosoma, is made up of six segments. The first segment contains the sexual organs as well as a pair of vestigial and modified appendages forming a structure called the genital operculum. The second segment bears a pair of featherlike sensory organs known as the pectines; the final four segments each contain a pair of book lungs. The mesosoma is armored with chitinous plates, known as tergites on the upper surface and sternites on the lower surface.
The cuticle of scorpions is covered with hairs in some places that act like balance organs. An outer layer that makes them fluorescent green under ultraviolet light is called the hyaline layer. Newly molted scorpions do not glow until after their cuticle has hardened. The fluorescent hyaline layer can be intact in fossil rocks that are hundreds of millions of years old.
Scorpions are opportunistic predators of small arthropods and insects. They use their chela (pincers) to catch the prey initially. Depending on the toxicity of their venom and size of their claws, they will then either crush the prey or inject it with neurotoxic venom. The neurotoxins consist of a variety of small proteins as well as sodium and potassium cations, which serve to interfere with neurotransmission in the victim. Scorpions use their venom to kill or paralyze their prey so that it can be eaten; in general it is fast acting, allowing for effective prey capture. Scorpion venoms are optimised for action upon other arthropods and therefore most scorpions are relatively harmless to humans; stings produce only local effects (such as pain, numbness or swelling). A few scorpion species, however, mostly in the family Buthidae, can be dangerous to humans. The scorpion that is responsible for the most human deaths is the Androctonus australis, or fat-tailed scorpion of North Africa. The toxicity of A. australis's venom is roughly half that of L. quinquestriatus, but since A. australis injects quite a bit more venom into its prey, it is the most deadly to humans. Human deaths normally occur in the young, elderly, or infirm; scorpions are generally unable to deliver enough venom to kill healthy adults. Some people, however may be allergic to the venom of some species, in which case the scorpion's sting can more likely kill. A primary symptom of a scorpion sting is numbing at the injection site, sometimes lasting for several days. It has been found that scorpions have two types of venom: a translucent, weaker venom designed to stun only, and an opaque, more potent venom designed to kill heavier threats.[19][20]
Unlike the majority of Arachnida species, scorpions are viviparous. The young are born one by one, and the brood is carried about on its mother's back until the young have undergone at least one moult.[21] The young generally resemble their parents, requiring between five and seven moults to reach maturity. Scorpions have quite variable lifespans and the lifespan of most species is not known. The age range appears to be approximately 4–25 years (25 years being the maximum reported life span in the species H. arizonensis). They are nocturnal and fossorial, finding shelter during the day in the relative cool of underground holes or undersides of rocks and coming out at night to hunt and feed. Scorpions prefer to live in areas where the temperatures range from 20°C to 37 °C (68°F to 99 °F), but may survive in the temperature range of 14 °C to 45 °C (57 °F to 113 °F).[22][23]
Scorpions have been found in many fossil records, including coal deposits from the Carboniferous Period and in marine Silurian deposits. They are thought to have existed in some form since about 425–450 million years ago. They are believed to have an oceanic origin, with gills and a claw like appendage that enabled them to hold onto rocky shores or seaweed.
Solifugae
Solifugae is a group of 900 species of arachnids, commonly known as camel spiders, wind scorpions, and sun spiders. The name derives from Latin, and means those that flee from the sun. Most Solifugae live in tropical or semitropical regions where they inhabit warm and arid habitats, but some species have been known to live in grassland or forest habitats. The most distinctive feature of Solifugae is their large chelicerae. Each of the two chelicerae are composed of two articles forming a powerful pincer; each article bears a variable number of teeth. Males in all families but Eremobatidae possess a flagellum on the basal article of the chelicera. Solifugae also have long pedipalps, which function as sense organs similar to insects' antennae and give the appearance of the two extra legs. Pedipalps terminate in reversible adhesive organs.
Solifugae are carnivorous or omnivorous, with most species feeding on termites, darkling beetles, and other small arthropods; however, solifugae have been videotaped consuming larger prey such as lizards. Prey is located with the pedipalps and killed and cut into pieces by the chelicerae. The prey is then liquefied and the liquid ingested through the pharynx. Reproduction can involve direct or indirect sperm transfer; when indirect, the male emits a spermatophore on the ground and then inserts it with his chelicerae in the female's genital pore.
Trigonotarbida
The Order Trigonotarbida is an extinct group of arachnids whose fossil record extends from the Silurian to the Lower Permian and are known from several localities in Europe, North America and Argentina. They superficially resemble spiders, to which they were clearly related.
These early arachnids seem to have been adapted to stalking prey on the ground. They have been found within the very structure of ground-dwellings plants, possibly where they hid to await their prey. Trigonotarbids are currently among the oldest known land arthropods. They lack silk glands on the opisthosoma and cheliceral poison glands, and most likely represented independent offshoots of the Arachnida.
Thelyphonida
The Thelyphonida (formerly Uropygida), commonly known as vinegarroons or whip scorpions, range from 25 to 85 mm in length; the largest species, of the genus Mastigoproctus, reaches 85 mm. Like the related orders Schizomida, Amblypygi, and Solifugae, the vinegarroons use only six legs for walking, having modified their first two legs to serve as antennae-like sensory organs. Many species also have very large scorpion-like pedipalps (pincers). They have one pair of eyes at the front of the cephalothorax and three on each side of the head. Whip scorpions have no poison glands, but they do have glands near the rear of their abdomen that can spray a combination of acetic acid and octanoic acid when they are bothered. Other species spray formic acid or chlorine. As of 2006, over 100 species have been described worldwide.
Whip scorpions are carnivorous, nocturnal hunters feeding mostly on insects but sometimes on worms and slugs. The prey is crushed between special teeth on the inside of the trochanters (the second segment of the leg) of the front legs. They are valuable in controlling the population of roaches and crickets.
Males secrete a sperm sac, which is transferred to the female. Up to 35 eggs are laid in a burrow, within a mucous membrane that preserves moisture. Mothers stay with the eggs and do not eat. The white young that hatch from the eggs climb onto their mother's back and attach themselves there with special suckers. After the first molt they look like miniature whip scorpions, and leave the burrow; the mother dies soon after. The young grow slowly, going through three molts in about three years before reaching adulthood.
Vinegarroons are found in tropical and subtropical areas worldwide, usually in underground burrows that they dig with their pedipalps. They may also burrow under logs, rotting wood, rocks, and other natural debris. They enjoy humid, dark places and avoid the light.
References
1. ^ Dunlop, J.A. (September 1996). "A trigonotarbid arachnid from the Upper Silurian of Shropshire" (PDF). Palaeontology 39 (3): 605–614. http://palaeontology.palass-pubs.org/pdf/Vol%2039/Pages%20605-614.pdf. Retrieved 2008-10-12.
2. ^ "arachnid". Oxford English Dictionary (2nd edition ed.). 1989.
3. ^ Cracraft, Joel & Donoghue, Michael, ed (2004). Assembling the Tree of Life. Oxford University Press, USA. p. 297.
4. ^ Schmidt 1943: 75
5. ^ Ruppert, E., Fox, R., & Barnes, R. (2007) Invertebrate Zoology: A functional evolutionary approach. 7th Edition. Thomson Learning ISBN 0-03-025982-7
6. ^ [1]
7. ^ a b c d e f g Barnes, Robert D. (1982). Invertebrate Zoology. Philadephia, PA: Holt-Saunders International. pp. 596–604. ISBN 0-03-056747-5.
8. ^ a b Pinto-da-Rocha, R., Machado, G. & Giribet, G. (2007) Harvestmen — The Biology of Opiliones. Harvard University Press ISBN 0-674-02343-9
9. ^ Arthur D. Chapman (2005). Numbers of living species in Australia and the world. Department of the Environment and Heritage. ISBN 0-642-56850-2. http://www.environment.gov.au/biodiversity/abrs/publications/other/species-numbers/pubs/number-living-species-report.pdf.
10. ^ a b D. E. Walter & H. C. Proctor (1999). Mites: Ecology, Evolution and Behaviour. University of New South Wales Press, Sydney and CABI, Wallingford. ISBN 0-86840-529-9.
11. ^ Jeanna Bryner (2007-03-19). "Creepy: Spiders Love to Snuggle". LiveScience. http://www.livescience.com/animalworld/070319_sweet_spiders.html.
12. ^ James H. Diaz (2004). "The global epidemiology, syndromic classification, management, and prevention of spider bites". American Journal of Tropical Medicine and Hygiene 71 (2): 239–250. doi:10.1126/science.153.3744.1647. PMID 15306718. http://www.ajtmh.org/cgi/content/full/71/2/239.
13. ^ Schütz, D., and Taborsky, M. (2003). "Adaptations to an aquatic life may be responsible for the reversed sexual size dimorphism in the water spider, Argyroneta aquatica". Evolutionary Ecology Research 5 (1): 105–117. http://www.zoology.unibe.ch/behav/pdf_files/Schuetz_EvolEcolRes03.pdf. Retrieved 2008-10-11.
14. ^ Dunlop, J. A. 1999. A redescription of the Carboniferous arachnid Plesiosiro madeleyi Pocock, 1911 (Arachnida: Haptopoda). Transactions of the Royal Society of Edinburgh: Earth Sciences, 90: 29–47.
15. ^ Herbert W. Levi (1967). "Adapations of espiratory systems of spiders". Evolution 21 (3): 571–583. doi:10.2307/2406617. http://www.jstor.org/stable/2406617.
16. ^ a b Steve Jacobs. "Entomological Notes: Pseudoscorpion Fact Sheet". Pennsylvania State University, Department of Entomology. http://www.ento.psu.edu/extension/factsheets/pseudoscorpion.htm.
17. ^ Peter Weygoldt (1966). "Spermatophore Web Formation in a Pseudoscorpion". Science 153 (3744): 1647–1649. doi:10.1126/science.153.3744.1647. PMID 17802636. http://www.sciencemag.org/cgi/content/abstract/153/3744/1647.
18. ^ Weygoldt, P. (1993). "Mating biology resolves trichotomy for cheliferoid pseudoscorpions (Pseudoscorpionida, Cheliferoidea)". Journal of Arachnology 21 (2): 1647. doi:10.1126/science.153.3744.1647. PMID 17802636. http://www.americanarachnology.org/JoA_free/JoA_v21_n2/JoA_v21_p156.pdf.
19. ^ David Cheng (2005-06-23). "Scorpion sting". eMedicine. http://www.emedicine.com/med/topic2081.htm.
20. ^ Jan Ove Rein (1993). "Sting use in two species of Parabuthus scorpions (Buthidae)". Journal of Arachnology 21: 60–63. http://www.americanarachnology.org/JoA_free/JoA_v21_n1/JoA_v21_p60.pdf.
21. ^ W. R. Lourenco (2000). "Reproduction in scorpions, with special reference to parthenogenesis". European Arachnology 153 (3744): 71–85. doi:10.1126/science.153.3744.1647. PMID 17802636.
22. ^ Neil F. Hadley (1970). "Water relations of the desert scorpion Hadrurus arizonensis". Journal of Experimental Biology 53: 547–558. http://jeb.biologists.org/cgi/reprint/53/3/547.pdf.
23. ^ K. Hoshino, A. T. V. Moura & H. M. G. de Paula (2006). "Selection of environmental temperature by the yellow scorpion Tityus serrulatus Lutz & Mello, 1922 (Scorpiones, Buthidae)". J. Venom. Anim. Toxins incl. Trop. Dis. 12 (1): 59–66. doi:10.1590/S1678-91992006000100005. http://www.scielo.br/pdf/jvatitd/v12n1/28301.pdf.