Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Protostomia
Cladus: Spiralia
Cladus: Lophotrochozoa
Phylum: Annelida
Classis: Clitellata
Subclassis: Oligochaeta
Ordo: Haplotaxida
Subordo: Lumbricina
Familia: Megascolecidae
Genera: Amynthas – Anisochaeta – Aporodrilus – Archipheretima – Arctiostrotus – Argilophilus – Balanta – Begemius – Borgesia – Celeriella – Chetcodrilus – Comarodrilus – Cryptochaeta – Cryptodrilus – Deodrilus – Didymogaster – Digaster – Diporochaeta – Drilocheira – Driloleirus – Eastoniella – Ephemitra – Eudiplotrema – Fletcherodrilus – Graliophilus – Hegesipyle – Heteroporodrilus – Hickmaniella – Kanchuria – Kincaidodrilus – Lampito – Lennoscolex – Macnabodrilus – Mahbenus – Megascolex – Megascolides – Metapheretima – Metaphire – Nelloscolex – Neotrigaster – Nephrallaxis – Notoscolex – Parapheretima – Paraplutellus – Perionychella – Perionyx – Perissogaster – Pheretima – Pithemera – Planapheretima – Pleionogaster – Pleurochaeta – Plutellus – Polypheretima – Pontodrilus – Promegascolex – Protozapotecia – Reflechtodrilus – Retrovescus – Sebbius – Simsia – Tokea – Tonoscolex – Toutellus – Troyia – Vesiculodrilus – Woodwardiella – Zacharius – Zapatodrilus
Name
Megascolecidae Rosa, 1891
References
Template:Rosa, 1891
Cervantes, G. & Fragoso, C. 2018. Protozapotecia acaxetlensis and Protozapotecia oyametlensis, two new earthworm species (Crassiclitellata: Acanthodrilidae) from Mexican central mountains. Pp 431–439 In Schmelz, R.M. (ed.). Global diversity of earthworms and enchytraeids (Clitellata): papers in honor of András Zicsi (1928–2015). Zootaxa 4496(1): 1–575. Reference page. Zootaxa 4496(1): 431–439. DOI: 10.11646/zootaxa.4496.1.32 Paywall Reference page.
Chang, C-H., Snyder, B.A. & Szlavecz, K. 2016. Asian pheretimoid earthworms in North America north of Mexico: An illustrated key to the genera Amynthas, Metaphire, Pithemera, and Polypheretima (Clitellata: Megascolecidae). Zootaxa 4179(3): 495–529. DOI: 10.11646/zootaxa.4179.3.7. Full article (PDF) Reference page.
Fahri, F., Amaliah, R., Suryobroto, B., Atmowidi, T. & Nguyen, A.D. 2018. Three new “caecate” earthworm species from Sulawesi, Indonesia (Oligochaeta, Megascolecidae). Zookeys, 805: 1–14. DOI: 10.3897/zookeys.805.24834 Reference page.
Misirlioğlu, I.M. & Stojanović, M. 2018. Distribution of non-lumbricid earthworms (Clitellata: Acanthodrilidae, Criodrilidae, Megascolecidae and Ocnerodrilidae) on the Balkans and Anatolia with first record of Amynthas morrisi (Beddard, 1892) from Turkey. Pp 197–205 In Schmelz, R.M. (ed.). Global diversity of earthworms and enchytraeids (Clitellata): papers in honor of András Zicsi (1928–2015). Zootaxa 4496(1): 1–575. Reference page. Zootaxa 4496(1): 197–205. DOI: 10.11646/zootaxa.4496.1.15 Paywall Reference page.
Wang, Y.-H.; Shih, H.-T. 2010: Earthworm fauna of Eastern Taiwan, with descriptions of two new species (Oligochaeta: Megascolecidae). Zootaxa 2341: 52–68. Preview Reference page.
Megascolecidae is a family of earthworms native to Madagascar, Australia, New Zealand, Asia, and North America. All species of the Megascolecidae belong to the Clitellata class.[2] The Megascolecidae comprise a large family of earthworms[3] and they can grow up to 2 meters in length.[4] The intercontinental distribution of Megascolecidae species favours the continental drift theory.[5]
Their large size distinguishes the Megascolecidae from other earthworm families; they are an essential part of maintaining soil structure, minor carbon sequestration, and maintaining terrestrial ecosystem balance. The Megascolecidae are one of many families in the Annelida phylum. They live in a terrestrial environment and have a preference for soil with high biomass content, high humidity, and warm temperature. Many different genera of the Megascolecidae have been described, but the total number of species is still unsettled.
Physiological features
Different species of the Megascolecidae have different physiological features, but some similarities of physiological features can be found between species.[6] The family contains relatively large individuals. The length of earthworms can vary from 1.0 cm (0.39 in) to 2 m (6 ft 7 in).[4] The number of spermathecal pores is normally paired, but multiples can be present in some species. The location of spermathecal pores and how they are positioned in different segmental locations is used in the identification of different megascolecidids.[7]
Earthworms ingest a variety of organic materials in the soil since they live in terrestrial environments.[8] Earthworms in this family have the ability to decompose lignocellulose, which requires assistance from microorganisms in their digestive system.[9] Aside from microorganisms, digestive enzymes such as amylase and cellulase, and proteins can be found in different regions of the gut. Chemical digestion mainly occurs in the intestinal caeca of earthworms, which have higher protease activity than other parts of the gut.[8]
Genital markings in the Megascolecidae family can be used to distinguish species.[10]
Reproductive system
The Megascolecidae are oviparous, laying eggs to reproduce. They are biparental.[11] The ideal condition of reproduction for the megascolecidids is 25 °C, where the eggs hatch the quickest and have the highest cocoon production.[12]
The male reproductive organ of the Megascolecidae includes testes, seminal vesicles, spermathecae, prostate glands,[13] and spermathecal pores.[14] The sperm can be found in testes and seminal vesicles, but cannot be found in spermathecae.[11] The female reproductive organ consists of female pores, which normally occur in pairs.[10] Both male and female reproductive organs are present in earthworms because they are monoecious. To breed, two earthworms exchange sperm. Long after they are separated, the egg case is secreted. It forms a ring around the worm, then the worm removes the ring from its body and injects its own eggs and the other worm's sperm into it. Afterwards, the egg case is sealed and ready to hatch, grow, and become a cocoon.[15]
Lifecycle
The Megascolecidae lifecycle takes around 50–57 days, depending on the external environments and habitat. The rate of growth during the first 14 days is very low, however; after 21 – 28 days, the rate of growth increases and then cycles up and down throughout the worm's life with no pattern.[16] The growth rate of these worms is correlated to the temperature of their environment. As temperatures increase from 30 °C, a significant growth rate and decreasing the time to sexual maturity are seen. The ideal living temperature of megascolecidids is around 15 to 30 °C.[17] Overall mean growth is 1.79 mg/day, 1.57 mg/day, and 1.34 mg/day depending on the abundance of worms and environment condition and size.[16] The cocoon production of Megascolecidae species also is correlated with the temperature of the environment.[18]
Distribution and habitat
Megascolecidae species can be in Australia, New Zealand, Asia, North America, South America, and Europe.[19] The intercontinental presence of Megascolecidae species can be explained by the Permanence of Continent Theory, which provides the explanation of most Cenozoic distributions; this theory,though, does not explain the presence of European Megascolecidae in North America. The intercontinental distribution of Megascolecidae has two different theories that explains its phenomenon -land bridges and continental drift.[5]
The Megascolecidae family originated in Australia.[20] Australia has number of species that are native to different parts of the country; Anisochaeta sebastiani is an example. This species can be found from Queensland to Tasmania.[21] Fifty-three known species of these earthworms can be found in Western Australia; Graliophilus georgei and G. secundus are some examples.[22] G. zeilensis can be found in the Northern Territory, specifically in Mount Zeil, West MacDonnell Ranges. G. zeilensis also can be found on the highest point of the mountain where average rainfall of the region is 250 mm annually. This distinguishes them from other species from Graliophilus.[23]
Metaphire and Amynthas are two common genera belonging to the Megascolecidae family. They can be found in different countries in Asia.[24]
Eight different species of Metaphire can be found in Malaysia: M. sedimensis, M. hijaunensis, M..e songkhlaensis, M. pulauensis, M. pulauensis, M. fovella, M. balingensis, and M. strellana. These species are commonly found in soil containing medium to high organic material. such as loamy soil.[25]
In Indonesia, 9 different genera can be found; Amynthas, Archipheretima, Metaphire, Metapheretima, Pheretima, Pithemera, Planapheretima, Pleinogaster, and Polypheretima. Pheretimoid is the biggest group of species, which consists of 65 species. Some intrageneric groups are restricted to mainland Asia, but others are native to Indo-Australian Archipelago.[26]
The ideal habitat for Megascolecidae is a terrestrial environment with soil with a high content of organic material, such as loamy soil,[16] cattlebor pig manure, and aerobically digested sewage sludge.[12] Megascolecidae species grow and produce more cocoons during the summer than the winter, because their lifecycle is highly correlated to the temperature and humidity of the environment.[16] Some Megascolecidae species have adapted to colder temperatures and drier areas, though, which enables them to live in higher-altitude regions of the land.[23]
Ecology
Megascolecidae form an important part of the soil ecosystem, in that they indicate soil health and maintain soil productivity. The abundance of earthworms is highly correlated to soil pH, texture, water content, and temperature.[27] Earthworms have the ability to biomonitor soil pollutants.[28] This is because of earthworms' burrowing habit serves to facilitate water flow and agrochemicals through the soil profile, so are able to perform carbon sequestration and reduce soil pollutants].[27] Invasive earthworms can have a significant impact causing changes in soil profiles, nutrient and organic matter content and other soil organisms or plant communities. In most cases the disturbed areas includes agricultural systems or previously areas that are lacking of earthworms would see the biggest impact of the invasive earthworms.[29] The impact of earthworms on soil structure is due to the rate of net nitrogen mineralization.[30]
Genera
Aceeca Blakemore, 2000
Aridulodrilus Dyne, 2021[31]
Amphimiximus Blakemore, 2000
Amynthas Kinberg, 1867
Anisochaeta Beddard, 1890
Anisogogaster Blakemore, 2010
Aporodrilus Blakemore, 2000
Archipheretima Michaelsen, 1928
Arctiostrotus McKey-Fender, 1982
Argilophilus Eisen, 1893
Austrohoplochaetella Jamieson, 1971
Begemius Easton, 1982
Caecadrilus Blakemore, 2000
Chetcodrilus Fender & McKey-Fender, 1990
Comarodrilus Stephenson, 1915
Cryptodrilus Fletcher, 1886
Dendropheretima James, 2005
Deodrilus Beddard, 1890
Didymogaster Fletcher, 1886
Digaster Perrier, 1872
Diporochaeta Beddard, 1890
Drilochaera Fender & McKey-Fender, 1990
Driloleirus Fender & McKey-Fender, 1990
Duplodicodrilus Blakemore, 2008
Eastoniella Jamieson, 1977
Fletcherodrilus Michaelsen, 1891
Gastrodrilus Blakemore, 2000
Gemascolex Edmonds & Jamieson, 1973
Geofdyneia Jamieson, 2000
Graliophilus Jamieson, 1971
Haereodrilus Dyne, 2000
Healesvillea Jamieson, 2000
Heteroporodrilus Jamieson, 1970
Hiatidrilus Blakemore, 1997
Hickmaniella Jamieson, 1974
Hypolimnus Blakemore, 2000
Isarogoscolex James, 2005
Kincaidodrilus McKey-Fender, 1982
Lampito Kinberg, 1867
Macnabodrilus Fender & McKey-Fender, 1990
Megascolex Templeton, 1844
Megascolides McCoy, 1878
Metapheretima Michaelsen, 1928
Metaphire Sims & Easton, 1972
Nelloscolex Gates, 1939
Nephrallaxis Fender & McKey-Fender, 1990
Notoscolex Fletcher, 1886
Oreoscolex Jamieson, 1973
Paraplutellus Jamieson, 1972[32]
Pericryptodrilus Jamieson, 1977
Perionychella Michaelsen, 1907
Perionyx Perrier, 1872
Perissogaster Fletcher, 1887
Pheretima Kinberg, 1867
Pithemera Sims & Easton, 1972
Planapheretima Michaelsen, 1934
Pleionogaster Michaelsen, 1892
Plutelloides Jamieson, 2000
Plutellus Perrier, 1873
Polypheretima Michaelsen, 1934
Pontodrilus Perrier, 1874
Propheretima Jamieson, 1995
Provescus Blakemore, 2000
Pseudocryptodrilus Jamieson, 1972
Pseudonotoscolex Jamieson, 1971
Retrovescus Blakemore, 1998
Scolecoidea Blakemore, 2000
Sebastianus Blakemore, 1997
Simsia Jamieson, 1972[32]
Spenceriella Michaelsen, 1907
Tassiedrilus Blakemore, 2000
Terrisswalkerius Jamieson, 1994
Tonoscolex Gates, 1933
Torresiella Dyne, 1997
Toutellus Fender & McKey-Fender, 1990
Troyia Jamieson, 1977
Vesiculodrilus Jamieson, 1973
Woodwardiella Stephenson, 1925
Zacharius Blakemore, 1997
References
Rosa, D. (1891). "Die exotischen terricolen des k. k. naturhistorischen Hofmuseums". Annalen des K.K. Naturhistorischen Hofmuseums. 6: 379–406.
"WoRMS - World Register of Marine Species - Megascolecidae Rosa, 1891". www.marinespecies.org. Retrieved 2021-05-20.
"The geographic distribution of the genera in the Pheretima complex (Megascolecidae) in eastern Asia and the Pacific region (English translation)". ResearchGate. Retrieved 2021-05-20.
Fahri, Fahri; Amaliah, Rizki; Suryobroto, Bambang; Atmowidi, Tri; Nguyen, Anh D. (2018-12-11). "Three new "caecate" earthworm species from Sulawesi, Indonesia (Oligochaeta, Megascolecidae)". ZooKeys (805): 1–14. doi:10.3897/zookeys.805.24834. PMC 6299058. PMID 30584390.
Reynolds, J.W. 1995. The distribution of earthworms (Annelida, Oligochaeta) in North America. Pp. 133- 153 In: Mishra, P.C., N. Behera, B.K. Senapati and B.C. Guru (eds.). Advances in Ecology and Environmental Sciences. New Delhi: Ashish Publishing House, 651 pp.
Zhao, Qi; Zhang, Minghuan; Dong, Yan; Qiu, Jiangping (June 2017). "New Species of Megascolecidae (Oligochaeta) from Hainan Island, China". Annales Zoologici. 67 (2): 221–227. doi:10.3161/00034541ANZ2017.67.2.003. S2CID 89825577.
Hutchings, P. (2007-06-01). "Reproductive Biology and Phylogeny of Annelida * Volume edited by Greg Rouse and Fredrik Pleijel Series edited by Barrie G.M. Jamieson". Integrative and Comparative Biology. 47 (5): 788–789. doi:10.1093/icb/icm008.
Nozaki, Mana; Ito, Katsutoshi; Miura, Chiemi; Miura, Takeshi (September 2013). "Examination of Digestive Enzyme Distribution in Gut Tract and Functions of Intestinal Caecum, in Megascolecid Earthworms (Oligochaeta: Megascolecidae) in Japan". Zoological Science. 30 (9): 710–715. doi:10.2108/zsj.30.710. ISSN 0289-0003. PMID 24004076. S2CID 24831606.
Fujii, Katsuhiko; Ikeda, Kana; Yoshida, Seo (2012). "Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms". International Microbiology. 15 (15): 121–130. doi:10.2436/20.1501.01.165. PMID 23847816.
Wang, Yu-Hsi; Shih, Hsi-Te (2017-07-12). "Four new species of earthworms (Oligochaeta: Megascolecidae: Amynthas) from Taiwan based on morphological and molecular evidence". Zoological Studies. 56 (56): e18. doi:10.6620/ZS.2017.56-18. PMC 6517727. PMID 31966217.
Vanpraagh, Bd (1995). "Reproductive biology of Megascolides australis Mccoy (Oligochaeta, Megascolecidae)". Australian Journal of Zoology. 43 (5): 489. doi:10.1071/ZO9950489.
Edwards, C. A.; Dominguez, J.; Neuhauser, E. F. (1998-06-19). "Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management". Biology and Fertility of Soils. 27 (2): 155–161. doi:10.1007/s003740050414. S2CID 12479260.
"Parthenogenesis, polyploidy and reproductive seasonality in the Taiwanese mountain earthworm Amynthas catenus (Oligochaeta, Megascolecidae) | Request PDF". ResearchGate. Retrieved 2021-05-21.
Minamiya, Yukio; Hayakawa, Hiroshi; Ohga, Kyohei; Shimano, Satoshi; Ito, Masamichi T.; Fukuda, Tatsuya (2011). "Variability of sexual organ possession rates and phylogenetic analyses of a parthenogenetic Japanese earthworm, Amynthas vittatus (Oligochaeta: Megascolecidae)". Genes & Genetic Systems. 86 (1): 27–35. doi:10.1266/ggs.86.27. PMID 21498920.
"Natural history". www.biologicaldiversity.org. Retrieved 2021-05-21.
Karmegam, Natchimuthu; Daniel, Thilagavathy (October 2009). "Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae)". Bioresource Technology. 100 (20): 4790–4796. doi:10.1016/j.biortech.2009.05.004. PMID 19467590.
Edwards, C. A.; Dominguez, J.; Neuhauser, E. F. (1998-06-01). "Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management". Biology and Fertility of Soils. 27 (2): 155–161. doi:10.1007/s003740050414. S2CID 12479260.
Bhattacharjee, Gautam; Chaudhuri, P. S. (2002-06-01). "Cocoon production, morphology, hatching pattern and fecundity in seven tropical earthworm species — a laboratory-based investigation". Journal of Biosciences. 27 (3): 283–294. doi:10.1007/BF02704917. PMID 12089477. S2CID 24522967.
Buckley, Thomas R.; James, Sam; Allwood, Julia; Bartlam, Scott; Howitt, Robyn; Prada, Diana (January 2011). "Phylogenetic analysis of New Zealand earthworms (Oligochaeta: Megascolecidae) reveals ancient clades and cryptic taxonomic diversity". Molecular Phylogenetics and Evolution. 58 (1): 85–96. doi:10.1016/j.ympev.2010.09.024. PMID 20951218.
Jamieson, B. G. M. (1977-04-06). "The indigenous earthworms (Megascolecidae: Oligochaeta) of Lord Howe Island". Records of the Australian Museum. 30 (12): 272–308. doi:10.3853/j.0067-1975.30.1977.390. Retrieved 2021-05-20.
Blakemore, R. J. (1997-12-01). "Two new genera and some new species of Australian earthworms (Acanthodrilidae, Megascolecidae: Oligochaeta)". Journal of Natural History. 31 (12): 1785–1848. doi:10.1080/00222939700770951.
Jamieson, B. G. M. (2009-08-20). "Earthworms (Megascolecidae: Oligochaeta) from Western Australia and their zoogeography". Journal of Zoology. 165 (4): 471–504. doi:10.1111/j.1469-7998.1971.tb02200.x.
Dyne, Geoffrey R. (2019-11-18). "A new relictual species of earthworm (Oligochaeta: Megascolecidae) from central Australia". Zootaxa. 4700 (1): 146–150. doi:10.11646/zootaxa.4700.1.9. PMID 32229997. S2CID 209564871.
Zhao, Qi; Cluzeau, Daniel; Briard, Charlène; Sun, Jing; Jiang, Jibao; Guernion, Muriel; Qiu, Jiang-Ping (2012-01-01). "Hainan earthworm community and the comparison with other East and Southeast Asia countries for geographic distribution and endemic rate". Zoology in the Middle East. 58 (Suppl. 4): 141–150. doi:10.1080/09397140.2012.10648996. S2CID 84500164.
Ng, Beewah; Bantaowong, Ueangfa; Tongkerd, Piyoros; Panha, Somsak (8 March 2018). "Description of two new species of the earthworm genus, Metaphire (Clitellata: Megascolecidae), from Kedah, Peninsular Malaysia" (PDF). Raffles Bulletin of Zoology. 66: 132–141.
Nugroho, Hari (2010). "A taxonomical review on pheretimoid earthworms (Ollgochaeta: Megascolecidae) from Indonesian archipelago". Indonesia Zoo. 19 (2): 93–108.
Martin Shipitalo; Tayfun Korucu (2017-01-11), "Structure: Earthworms", Encyclopedia of Soil Science (3 ed.), CRC Press, pp. 2212–2215, doi:10.1081/e-ess3-120053787, ISBN 978-1-315-16186-0, retrieved 2021-05-20
Hirano, Takeshi; Tamae, Kazuyoshi (2011-11-28). "Earthworms and Soil Pollutants". Sensors. 11 (12): 11157–11167. Bibcode:2011Senso..1111157H. doi:10.3390/s111211157. PMC 3251976. PMID 22247659.
Hendrix, P. F.; Baker, G. H.; Callaham, M. A.; Damoff, G. A.; Fragoso, C.; González, G.; James, S. W.; Lachnicht, S. L.; Winsome, T.; Zou, X. (September 2006). "Invasion of exotic earthworms into ecosystems inhabited by native earthworms". Biological Invasions. 8 (6): 1287–1300. doi:10.1007/s10530-006-9022-8. S2CID 18494778.
Willems, J. J. G. M.; Marinissen, J. C. Y.; Blair, J. (July 1996). "Effects of earthworms on nitrogen mineralization". Biology and Fertility of Soils. 23 (1): 57–63. doi:10.1007/BF00335819. S2CID 23836511.
Records of the Australian Museum (2021) vol. 73, issue no. 4, pp. 123–129 https://doi.org/10.3853/j.2201-4349.73.2021.1769
Jamieson, B. G. M. (1972). "The australian earthworm genus Spenceriella and description of two new genera (Megascolecidae: Oligochaeta)". Memoirs of the National Museum of Victoria. 33: 73–87. doi:10.24199/j.mmv.1972.33.10.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License