Hellenica World

 

.

Η απαγωγή σε άτοπο (λατινικά reductio ad absurdum, καθαρεύουσα εις άτοπον απαγωγή) είναι μία από τις σημαντικότερες και συχνότερα χρησιμοποιούμενες μεθόδους μαθηματικής απόδειξης. Ωστόσο, η απαγωγή σε άτοπο δε χρησιμοποιείται αποκλειστικά στα μαθηματικά και την τυπική λογική. Γενικότερα, είναι η συλλογιστική μέθοδος κατά την οποία αποδεικνύεται η αλήθεια μιας πρότασης με βάση το γεγονός ότι η αντίθετη της είναι ψευδής ή λανθασμένη.[1]

Χρησιμοποιήθηκε από τον Αριστοτέλη σε συνδυασμό με την αρχή αποκλειόμενου μέσου και την αρχή μη-αντίφασης. Σημαντική πηγή επιχειρημάτων εις άτοπο απαγωγής αποτελούν οι πλατωνικοί διάλογοι καθώς και οι αντινομίες του Καντ.

Συνήθως η αντίθετη της προς απόδειξη πρότασης δεν είναι άμεσα ή φανερά λανθασμένη η ίδια. Αλλά οδηγεί σε ισοδύναμα συμπεράσματα που αυτά είναι σαφώς λανθασμένα.

Η δομή του επιχειρήματος είναι τέτοια ώστε για να αποδειχθεί πως μία πρόταση είναι αληθής, ξεκινάμε από την υπόθεση πως η αντίθετη της είναι αληθής (δηλαδή η αρχική πρόταση είναι ψευδής),και καταλήγουμε σε ένα συμπέρασμα που αποτελεί αντίφαση. Τότε, εφόσον η αντίφαση προέκυψε από διαδοχή έγκυρων συλλογισμών προς ισοδύναμες προτάσεις, η αρχική πρόταση θα πρέπει να είναι σε κάθε περίπτωση αληθής.

Ή αντίστοιχα, για να αποδειχθεί πως μία πρόταση είναι ψευδής, ξεκινάμε από την υπόθεση πως είναι αληθής, και καταλήγουμε σε ένα συμπέρασμα που αποτελεί αντίφαση. Τότε, εφόσον η αντίφαση προέκυψε διαδοχή έγκυρων συλλογισμών προς ισοδύναμες προτάσεις, η αρχική πρόταση θα πρέπει να είναι σε κάθε περίπτωση ψευδής.
Πηγές

Westley C. Salmon, Logic, Prentice Hall, 1973

Παραπομπές

↑ Λεξικό της κοινής νεοελληνικής, Ινστιτούτο Νεοελληνικών Σπουδών του ΑΠΘ, 1988

Μαθηματική Εγκυκλοπαίδεια

Scientific Library

Retrieved from "http://el.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Επιστήμη

Αλφαβητικός κατάλογος

Home