.
Γεωμετρική πρόοδος
Γεωμετρική πρόοδος είναι η ακολουθία , στην οποία κανένας όρος δεν ισούται με το μηδέν και για δύο διαδοχικούς όρους της αν, αν+1 ισχύει ότι \( \frac{\alpha_{\nu+1}}{\alpha_{\nu}}=\lambda \), όπου λ μία μη μηδενική σταθερή ποσότητα. Η ποσότητα λ ονομάζεται λόγος της γεωμετρικής προόδου. Αντίστροφα, αποδεικνύεται ότι, αν το οποιοδήποτε πηλίκο δύο διαδοχικών όρων μιας ακολουθίας είναι συγκεκριμένο, τότε αυτή η ακολουθία είναι γεωμετρική πρόοδος. Έτσι, όπως πολλές ακολουθίες, έχει δύο τύπους:
- Γενικός τύπος: αν=α1·λν-1
- Αναδρομικός τύπος: αν=αν-1·λ
Ιδιότητες της προόδου
Γραφική παράσταση αύξουσας γεωμετρικής προόδου.
Η γραφική παράσταση της γεωμετρικής προόδου είναι διαδοχικά σημεία μιας ή δύο μετασχηματισμένων καμπυλών εκθετικής συνάρτησης.
Ο γεωμετρικός μέσος όρος δύο αριθμών α,γ είναι ο β, αν και μόνο αν οι όροι α, β, γ είναι διαδοχικοί όροι γεωμετρικής προόδου.
Απεικόνιση της περατότητας της σειράς γεωμετρικής προόδου με λ=1/2. Το κάθε επιμέρους εμβαδόν αντιστοιχεί σε έναν όρο της γεωμετρικής προόδου, ενώ το συνολικό εμβαδόν αντιστοιχεί στη σειρά, με άθροισμα 2.
Αν λ δεν είναι ένα:
Το άθροισμα των ν πρώτων όρων της γεωμετρικής προόδου (αν) ( με πρώτον όρο τον α1) ισούται με \( \Sigma_\nu=\alpha_1\frac{\lambda^{\nu}-1}{\lambda-1} \)
Αν η πρόοδος είναι φθίνουσα \( (|\lambda|<1) \), τότε η σειρά των όρων της γεωμετρικής προόδου (δηλαδή το διαδοχικό άθροισμα των άπειρων όρων της) που έχει πρώτο όρο τον αριθμό α1 και λόγο λ, δίνεται από τον τύπο: \( \frac{\alpha_1}{1-\lambda} \)
Αν λ=1, τότε όλοι οι όροι της γεωμετρικής προόδου είναι ίσοι μεταξύ τους και το άθροισμα ν όρων είναι v·α1.
Αν λ=-1, τότε όλοι οι όροι της γεωμετρικής προόδου έχουν ίδια απόλυτη τιμή και το άθροισμα ν όρων είναι α1, αν ν περιττός αριθμός και 0 αν ν άρτιος αριθμός.
Retrieved from "http://el.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License