Hellenica World

.

Η απόλυτη τιμή (Absolute value) ή το απόλυτο ενός πραγματικού αριθμού είναι η τιμή του αριθμού χωρίς πρόσημο. Η έννοια της απόλυτης τιμής μπορεί να βρεθεί και σε άλλες μαθηματικές δομές όπως στους δακτύλιους ή στους μιγαδικούς αριθμούς.

Ορολογία

Η έννοια "module" ως μονάδα μέτρησης στη γαλλική γλώσσα, αποδίδεται στον Jean-Robert Argand κυρίως για τους μιγαδικούς αριθμούς[1][2][3]. Η εισαγωγή του συμβολισμού |α| αποδίδεται στον Karl Weierstrass ο οποίος την πρωτοχρησιμοποίησε το 1841[4]. Άλλος, γνωστός κυρίως στην πληροφορική, συμβολισμός της απόλυτης τιμής ενός αριθμού a είναι ο abs(a).
Ορισμοί και ιδιότητες
Πραγματικοί αριθμοί

Στο σύνολο των πραγματικών αριθμών η απόλυτη τιμή κάθε πραγματικού αριθμού α ή το απόλυτο α (το οποίο συμβολίζεται ως |α| δηλαδή ο αριθμός ανάμεσα σε δύο κατακόρυφες γραμμές) ορίζεται με τη συνάρτηση:

\( |\alpha| = \begin{cases} \alpha & \gamma\iota\alpha\; \alpha \geqslant 0 \\ -\alpha & \gamma\iota\alpha\; \alpha < 0. \end{cases} \)

Καθώς η τετραγωνική ρίζα ενός αριθμού είναι πάντα θετική ισχύει επίσης και το:

\( |\alpha| = \sqrt{\alpha^2} \) (1)

Μιγαδικοί αριθμοί
Η απόλυτη τιμή ενός αριθμού z είναι η απόσταση r του z από το κέντρο των συντεταγμένων.

Δεδομένου ότι το σύνολο των μιγαδικών αριθμών δεν είναι διατεταγμένο, ο ορισμός, μέσω συνάρτησης, για τους πραγματικούς αριθμούς δεν μπορεί άμεσα να γενικευθεί στους μιγαδικούς αριθμούς.

Καθώς όμως η τετραγωνική ρίζα ενός αριθμού είναι πάντα θετική, σύμφωνα με την πιο πάνω εξίσωση (1), μπορούμε να ορίσουμε την απόλυτη τιμή ενός μιγαδικού αριθμού:

\( z = x + iy,\, \)

ως:

\( |z| = \sqrt{x^2 + y^2}. \)

Παραπομπές

↑ Nahin
↑ O'Connor i Robertson
↑ functions.Wolfram.com
↑ Nicholas J. Higham, Handbook of writing for the mathematical sciences, SIAM. ISBN 0898714206, s. 25

Retrieved from "http://el.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Επιστήμη

Αλφαβητικός κατάλογος

Home