Hellenica World

Optical fiber cable

An optical fiber cable is a cable containing one or more optical fibers. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable will be deployed.

Design
A multi-fiber cable

In practical fibers, the cladding is usually coated with a tough resin buffer layer, which may be further surrounded by a jacket layer, usually plastic. These layers add strength to the fiber but do not contribute to its optical wave guide properties. Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.[1]
Left: LC/PC connectors
Right: SC/PC connectors
All four connectors have white caps covering the ferrules.

For indoor applications, the jacketed fiber is generally enclosed, with a bundle of flexible fibrous polymer strength members like Aramid (e.g. Twaron or Kevlar), in a lightweight plastic cover to form a simple cable. Each end of the cable may be terminated with a specialized optical fiber connector to allow it to be easily connected and disconnected from transmitting and receiving equipment.
An optical fiber breakout cable

For use in more strenuous environments, a much more robust cable construction is required. In loose-tube construction the fiber is laid helically into semi-rigid tubes, allowing the cable to stretch without stretching the fiber itself. This protects the fiber from tension during laying and due to temperature changes. Loose-tube fiber may be "dry block" or gel-filled. Dry block offers less protection to the fibers than gel-filled, but costs considerably less. Instead of a loose tube, the fiber may be embedded in a heavy polymer jacket, commonly called "tight buffer" construction. Tight buffer cables are offered for a variety of applications, but the two most common are "Breakout" and "Distribution". Breakout cables normally contain a ripcord, two non-conductive dielectric strengthening members (normally a glass rod epoxy), an aramid yarn, and 3 mm buffer tubing with an additional layer of Kevlar surrounding each fiber. The ripcord is a parallel cord of strong yarn that is situated under the jacket(s) of the cable for jacket removal.[2] Distribution cables have an overall Kevlar wrapping, a ripcord, and a 900 micrometer buffer coating surrounding each fiber. These fiber units are commonly bundled with additional steel strength members, again with a helical twist to allow for stretching.

A critical concern in outdoor cabling is to protect the fiber from contamination by water. This is accomplished by use of solid barriers such as copper tubes, and water-repellent jelly or water-absorbing powder surrounding the fiber.

Finally, the cable may be armored to protect it from environmental hazards, such as construction work or gnawing animals. Undersea cables are more heavily armored in their near-shore portions to protect them from boat anchors, fishing gear, and even sharks, which may be attracted to the electrical power signals that are carried to power amplifiers or repeaters in the cable.

Modern fiber cables can contain up to a thousand fibers in a single cable, so the performance of optical networks easily accommodates even today's demands for bandwidth on a point-to-point basis. However, unused point-to-point potential bandwidth does not translate to operating profits, and it is estimated that no more than 1% of the optical fiber buried in recent years is actually 'lit'.[citation needed] While unused fiber may not be carrying traffic, it still has value as dark backbone fiber. Companies can lease or sell the unused fiber to other providers who are looking for service in or through an area. Many companies are "overbuilding" their networks for the specific purpose of having a large network of dark fiber for sale. This is a great idea as many cities are difficult to deal with when applying for permits and trenching in new ducts is very costly.

Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, dual use as power lines,[3][not in citation given] installation in conduit, lashing to aerial telephone poles, submarine installation, or insertion in paved streets. In recent years the cost of small fiber-count pole-mounted cables has greatly decreased due to the high Japanese and South Korean demand for fiber to the home (FTTH) installations.

Cable types

OFC: Optical fiber, conductive
OFN: Optical fiber, nonconductive
OFCG: Optical fiber, conductive, general use
OFNG: Optical fiber, nonconductive, general use
OFCP: Optical fiber, conductive, plenum
OFNP: Optical fiber, nonconductive, plenum
OFCR: Optical fiber, conductive, riser
OFNR: Optical fiber, nonconductive, riser
OPGW: Optical fiber composite overhead ground wire
ADSS: All-Dielectric Self-Supporting

Jacket material

The jacket material is application specific. The material determines the mechanical robustness, aging due to UV radiation, oil resistance, etc. Nowadays PVC is being replaced by halogen free alternatives, mainly driven by more stringent regulations.

Material Halogen-free UV Resistance Remark
LSFH Polymer Yes Good[4] Good for indoor use
Polyvinyl chloride (PVC) No Good[5] Being replaced by LSFH Polymer
Polyethylene (PE) Yes Poor[6][7][8] Good for outdoor applications
Polyurethane (PUR) Yes ? Highly flexible cables
Polybutylene terephthalate (PBT) Yes Fair?[9] Good for indoor use
Polyamide (PA) Yes Good[10]-Poor[11] Indoor and outdoor use

Color coding

Patch cords

The buffer or jacket on patchcords is often color-coded to indicate the type of fiber used. The strain relief "boot" that protects the fiber from bending at a connector is color-coded to indicate the type of connection. Connectors with a plastic shell (such as SC connectors) typically use a color-coded shell. Standard color codings for jackets and boots (or connector shells) are shown below:

Remark: It is also possible that a small part of a connector is additionally colour-coded, e.g. the leaver of an E-2000 connector or a frame of an adapter. This additional colour coding indicates the correct port for a patchcord, if many patchcords are installed at one point.
Buffer/jacket color Meaning
Yellow single-mode optical fiber
Orange multi-mode optical fiber
Aqua 10 gig laser-optimized 50/125 micrometer multi-mode optical fiber
Grey outdated color code for multi-mode optical fiber
Blue Sometimes used to designate polarization-maintaining optical fiber
Connector Boot Meaning Comment
Blue Physical Contact (PC), 0° mostly used for single mode fibers; some manufacturers use this for polarization-maintaining optical fiber.
Green Angle Polished (APC), 8° not available for multimode fibers
Black Physical Contact (PC), 0°
Grey, Beige Physical Contact (PC), 0° multimode fiber connectors
White Physical Contact (PC), 0°
Red High optical power. Sometimes used to connect external pump lasers or Raman pumps.

Multi-fiber cables

Individual fibers in a multi-fiber cable are often distinguished from one another by color-coded jackets or buffers on each fiber. The identification scheme used by Corning Cable Systems is based on EIA/TIA-598, "Optical Fiber Cable Color Coding." EIA/TIA-598 defines identification schemes for fibers, buffered fibers, fiber units, and groups of fiber units within outside plant and premises optical fiber cables. This standard allows for fiber units to be identified by means of a printed legend. This method can be used for identification of fiber ribbons and fiber subunits. The legend will contain a corresponding printed numerical position number and/or color for use in identification.[12]

EIA598-A Fiber Color Chart[12]
Position Jacket color
1 Blue
2 Orange
3 Green
4 Brown
5 Slate
6 White
7 Red
8 Black
9 Yellow
10 Violet
11 Rose
12 Aqua
13 Blue with black tracer
14 Orange with black tracer
15 Green with black tracer
16 Brown with black tracer
17 Slate with black tracer
18 White with black tracer
19 Red with black tracer
20 Black with yellow tracer
21 Yellow with black tracer
22 Violet with black tracer
23 Rose with black tracer
24 Aqua with black tracer
Color coding of Premise Fiber Cable[12]
Fiber Type / Class Diameter (µm) Jacket Color
Multimode 1a 50/125 Orange
Multimode 1a 62.5/125 Slate
Multimode 1a 85/125 Blue
Multimode 1a 100/140 Green
Singlemode IVa All Yellow
Singlemode IVb All Red

Losses

Typical modern Multimode Graded-Index fibers have 3 dB/km of attenuation loss at 850 nm and 1 dB/km at 1300 nm. 9/125 Singlemode loses 0.4/0.25 dB/km at 1310/1550 nm. POF (plastic optical fiber) loses much more: 1 dB/m at 650 nm. Plastic Optical Fiber is large core (about 1mm) fiber suitable only for short, low speed networks such as within cars.[13]

Each connection made adds about 0.6 dB of average loss, and each joint (splice) adds about 0.1 dB.[14] Depending on the transmitter power and the sensitivity of the receiver, if the total loss is too large the link will not function reliably.

Invisible IR light is used in commercial glass fiber communications because it has lower attenuation in such materials than visible light. However, the glass fibers will transmit visible light somewhat, which is convenient for simple testing of the fibers without requiring expensive equipment. Splices can be inspected visually, and adjusted for minimal light leakage at the joint, which maximizes light transmission between the ends of the fibers being joined.

The charts at Understanding Wavelengths In Fiber Optics and Optical power loss (attenuation) in fiber illustrate the relationship of visible light to the IR frequencies used, and show the absorption water bands between 850, 1300 and 1550 nm.

Safety

Because the infrared light used in communications can not be seen, there is a potential laser safety hazard to technicians. In some cases the power levels are high enough to damage eyes, particularly when lenses or microscopes are used to inspect fibers which are inadvertently emitting invisible IR. Inspection microscopes with optical safety filters are available to guard against this.

Small glass fragments can also be a problem if they get under someone's skin, so care is needed to ensure that fragments produced when cleaving fiber are properly picked up and disposed of.

See also


TIA/EIA-568-B Color coding for electrical cable
Optical fiber connector Fiber Optic connector types
Optical attenuator Fiber optic attenuator
Submarine communications cable
Optical communication
Optical interconnect
Optical power meter
Optical time-domain reflectometer
Parallel optical interface
Light Peak
Interconnect bottleneck

Notes and references

^ "Light collection and propagation". National Instruments' Developer Zone. Retrieved 2007-03-19.
Hecht, Jeff (2002). Understanding Fiber Optics (4th ed. ed.). Prentice Hall. ISBN 0-13-027828-9.
^ http://www.its.bldrdoc.gov/fs-1037/dir-031/_4623.htm
^ "Screening report for Alaska rural energy plan" (pdf). Alaska Division of Community and Regional Affairs. Archived from the original on May 8, 2006. Retrieved Apr. 11, 2006.
^ http://www.goodfellow.com/E/Polymethylmethacrylate.html
^ http://www.goodfellow.com/E/Polyvinylchloride-Unplasticised.html
^ http://www.goodfellow.com/E/Polyethylene-Highdensity.html
^ http://www.goodfellow.com/E/Polyethylene-LowDensity.html
^ http://www.goodfellow.com/E/Polyethylene-UHMW.html
^ http://www.goodfellow.com/E/Polybutyleneterephthalate.html
^ http://www.goodfellow.com/E/Polyamide-Nylon12-30GlassFibreReinforced.html
^ http://www.goodfellow.com/E/Polyamide-Nylon6.html
^ a b c Leroy Davis (2007-02-21). "Fiber wire color coding". Retrieved 2007-12-01.
^ Optical Fiber (tutorial at lanshack.com) Retrieved 2010-08-20.
^ Calculating the Maximum Attenuation for Optical Fiber Links. Cisco document 27042. Retrieved 2010-08-20.

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Index

Scientific Library - Scientificlib.com
Scientificlib News