.
Timeline of computational physics
Alain Connes official website with downloadable papers.
Alain Connes's Standard Model.
A History of Quantum Mechanics
A Brief History of Quantum Mechanics
Timeline of computational physics
1930s
John Vincent Atanasoff and Clifford Berry create the first electronic non-programmable, digital computing device, the Atanasoff–Berry Computer, from 1937 to 1942.
1940s
Nuclear bomb and ballistics simulations at Los Alamos and BRL, respectively.[1]
Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century) invented at Los Alamos by von Neumann, Ulam and Metropolis.[2][3][4]
First hydro simulations at Los Alamos occurred.[5][6]
Ulam and von Neumann introduce the notion of cellular automata.[7]
1950s
Equations of State Calculations by Fast Computing Machines introduces the Metropolis–Hastings algorithm.[8] Also, important earlier independent work by Alder and S. Frankel.[9][10]
Fermi, Ulam and Pasta with help from Mary Tsingou, discover the Fermi–Pasta–Ulam problem.[11]
Molecular dynamics invented by Alder and Wainwright[12]
1960s
Molecular dynamics was invented independently by Aneesur Rahman.[13]
Kruskal and Zabusky follow up the Fermi–Pasta–Ulam problem with further numerical experiments, and coin the term "soliton".[14][15]
Edward Lorenz discovers the butterfly effect on a computer, attracting interest in chaos theory.[16]
W Kohn instigates the development of density functional theory (with LJ Sham and P Hohenberg),[17][18] for which he shares the Nobel Chemistry Prize (1998).[19] This contribution is arguably the first Nobel given for a computer programme or computational technique.
Frenchman Verlet (re)discovers a numerical integration algorithm,[20] (first used in 1791 by Delambre, by Cowell and Crommelin in 1909, and by Carl Fredrik Störmer in 1907,[21] hence the alternative names Störmer's method or the Verlet-Störmer method) for dynamics, and the Verlet list.[20]
1970s
Veltman's calculations at CERN lead him and t'Hooft to valuable insights into renormalizability of electroweak theory.[22] The computation has been cited as a key reason to the award of the Nobel prize to both.[23]
Hardy, Pomeau and de Pazzis introduced the first lattice gas model, abbreviated as the HPP model after its authors.[24][25] These later evolve into lattice Boltzmann models.
Wilson shows that continuum QCD is recovered for an infinitely large lattice with its sites infinitesimally close to one another, thereby beginning lattice QCD.[26]
1980s
Italian physicists Car and Parrinello invent the Car–Parrinello method.[27]
Fast multipole method invented by Rokhlin and Greengard (voted one of the top 10 algorithms of the 20th century).[28][29][30]
See also
Timeline of scientific computing
Computational physics
Important publications in computational physics
References
Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
Von Neumann, J., Theory of Self-Reproduiing Automata, Univ. of Illinois Press, Urbana, 1966.
Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
http://www.hp9825.com/html/stan_frankel.html
Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
http://www.merriam-webster.com/dictionary/soliton ; retrieved 3 nov 2012.
Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences 20 (2): 130–141 20 (2): 130. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PhysRev.136.B864.
"The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 2008-10-06.
Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review 159: 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physics Review A, 13:1949–1961.
Wilson, K. (1974). "Confinement of quarks". Physical Review D 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
External links
The Monte Carlo Method: Classic Papers
Monte Carlo Landmark Papers
V.V. Ezhela; et al. (1996). Particle Physics: One Hundred Years of Discoveries: An Annotated Chronological Bibliography. Springer–Verlag. ISBN 1-56396-642-5.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License