.
Interaction-free measurement
In physics, interaction-free measurement is a type of measurement in quantum mechanics that detects the position or state of an object without an interaction occurring between it and the measuring device. Examples include the Renninger negative-result experiment, the Elitzur–Vaidman bomb-testing problem, and certain double-cavity optical systems, such as Hardy's paradox.
See also
Counterfactual definiteness
References
Mauritius Renninger, Messungen ohne Storung des Messobjekts (Observations without disturbing the object), (1960) Zeitschrift für Physik, 158 pp 417-421.
Mauritius Renninger, (1953) Zeitschrift für Physik, 136 p. 251
Louis de Broglie, The Current Interpretation of Wave Mechanics, (1964) Elsevier, Amsterdam. (Provides discussion of the Renninger experiment.)
Robert H. Dicke, Interaction-Free Quantum Measurements, A paradox?, American J. Physics 1981; 49(10): 925-930. (Provides a recent discussion of the Renninger experiment).
John G. Cramer, "The Transactional Interpretation of Quantum Mechanics", (1986) Reviews of Modern Physics, 58, pp.647-688. (Section 4.1 reviews Renninger's experiment).
Avshalom C. Elitzur and Lev Vaidman, "Quantum mechanical interaction-free measurements". Foundations of Physics 23 (1993), 987-97.
Roger Penrose, (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London, ISBN 0-679-45443-8.
Andrew G. White, Jay R. Mitchell, Olaf Nairz, and Paul G. Kwiat, "'Interaction-free imaging," Physical Review A 58, (1998) 605.
Paul G. Kwiat, Harald Weinfurter (de), Thomas Herzog, Anton Zeilinger, and Mark A. Kasevich, "Interaction-free measurement," Physical Review Letters 74, (1995) 4763.
Paul G. Kwiat, The Tao of Quantum Interrogation, (2001).
Sean M. Carroll, Quantum Interrogation, (2006).
G. S. Paraoanu, "Interaction-Free Measurements with Superconducting Qubits", Physical Review Letters 97, (2006) 180406.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License