ART

.

In mathematical physics, a Gibbons–Hawking space, named after Gary Gibbons and Stephen Hawking, is essentially a hyperkähler manifold with an extra U(1) symmetry.[1] (In general, Gibbons–Hawking metrics are a subclass of hyperkähler metrics.[2]) Gibbons–Hawking spaces, especially ambipolar ones,[3] find an application in the study of black hole microstate geometries.[1][4]


See also

Gibbons–Hawking effect

References

Mathur, Samir D. (22 January 2009). "The fuzzball paradigm for black holes: FAQ" (PDF). Ohio State University. p. 20. Retrieved 16 April 2012.
Wang, Chih-Wei (2007). Five Dimensional Microstate Geometries. ProQuest. p. 67. ISBN 978-0-549-39022-0. Retrieved 16 April 2012.
Bellucci, Stefano (2008). Supersymmetric Mechanics: Attractors and Black Holes in Supersymmetric Gravity. Springer. p. 5. ISBN 978-3-540-79522-3. Retrieved 16 April 2012.
Bena, Iosif; Nikolay Bobev; Stefano Giusto; Clement Ruefa; Nicholas P. Warner (March 2011). "An infinite-dimensional family of black-hole microstate geometries" (PDF). Journal of High Energy Physics (International School for Advanced Studies) 3 (22). doi:10.1007/JHEP03(2011)022.


Physics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World