.
Einstein–Brillouin–Keller method
The Einstein–Brillouin–Keller method (EBK) is a semiclassical method to compute eigenvalues in quantum mechanical systems.[1] There have been a number of recent results computational issues related to this topic, for example, the work of Eric J. Heller and Emmanuel David Tannenbaum using a partial differential equation gradient descent approach.[2]
See also
Quantum mechanics
WKB approximation
Albert Einstein
Léon Brillouin
Joseph B. Keller
References
Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos". Physics Today 58 (8): 37–43. Bibcode:2005PhT....58h..37S. doi:10.1063/1.2062917.
Tannenbaum, E.D. and Heller, E. (2001). "Semiclassical Quantization Using Invariant Tori: A Gradient-Descent Approach". Journal of Physical Chemistry A 105: 2801–2813.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License