.
Bargmann's limit
In quantum mechanics, Bargmann's limit, named for Valentine Bargmann, provides an upper bound on the number \( N_l \) of bound states in a system. It takes the form
\( N_l \leq \frac{1}{2l+1} \frac{2m}{\hbar^2} \int_0^\infty r |V(r)|_{V<0}\, dr \)
Note that the delta function potential attains this limit.
References
Bargmann, Proc. Nat. Acad. Sci. 38 961 (1952)
Schwinger, Proc. Nat. Acad. Sci. 47 122 (1961)
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License