.
Stirling polynomials
In mathematics, the Stirling polynomials are a family of polynomials that generalize important sequences of numbers appearing in combinatorics and analysis, the Stirling numbers and the Bernoulli numbers.
Definition and examples
For nonnegative integers k, the Stirling polynomials Sk(x) are defined by the generating function equation
\( \left( {t \over {1-e^{-t}}} \right) ^{x+1}= \sum_{k=0}^\infty S_k(x){t^k \over k!}. \)
The first 10 Stirling polynomials are:
k \(S_k(x)\, \)
0 \( 1\, \) \)
1 \( {\scriptstyle\frac{1}{2}}(x+1)\, \)
2 \( {\scriptstyle\frac{1}{12}} (3x^2+5x+2) \, \)
3 \( {\scriptstyle\frac{1}{8}} (x^3+2x^2+x) \, \)
4 \( {\scriptstyle\frac{1}{240}} (15x^4+30x^3+5x^2-18x-8) \, \)
5 \( {\scriptstyle\frac{1}{96}} (3x^5+5x^4-5x^3-13x^2-6x) \, \)
6 \( {\scriptstyle\frac{1}{4032}} (63x^6+63x^5-315x^4-539x^3-84x^2+236x+96) \, \)
7 \( {\scriptstyle\frac{1}{1152}} (9x^7-84x^5-98x^4+91x^3+194x^2+80x) \, \)
8 \( {\scriptstyle\frac{1}{34560}} (135x^8-180x^7-1890x^6-840x^5+6055x^4+8140x^3+884x^2-3088x-1152) \, \)
9 \( {\scriptstyle\frac{1}{7680}} (15x^9-45x^8-270x^7+182x^6+1687x^5+1395x^4-1576x^3-2684x^2-1008x) \, \)
Properties
Special values include:
\( S_k(-m)= {(-1)^k \over {k+m-1 \choose k}} S_{k+m-1,m-1} \) , where S_{m,n} denotes Stirling numbers of the second kind. Conversely, S_{n,m}=(-1)^{n-m} {n \choose m} S_{n-m}(-m-1); \)
\( S_k(-1)= \delta_{k,0}; \)
\( S_k(0)= (-1)^k B_k \) , where \( B_k \) are Bernoulli numbers;
\( S_k(1)= (-1)^{k+1} ((k-1) B_k+ k B_{k-1}); \)
\( S_k(2)= {(-1)^{k}\over 2} ((k-1)(k-2) B_k+ 3 k(k-2) B_{k-1}+ 2 k(k-1) B_{k-2}); \)
\( S_k(k)= k!; \)
\( S_k(m)= {(-1)^k \over {m \choose k}} s_{m+1, m+1-k} \) , where \( s_{m,n} \) are Stirling numbers of the first kind. They may be recovered by \( s_{n,m}= (-1)^{n-m} {n-1 \choose n-m} S_{n-m}(n-1). \)
The sequence \( S_k(x-1) \) is of binomial type, since \( S_k(x+y-1)= \sum_{i=0}^k {k \choose i} S_i(x-1) S_{k-i}(y-1) \) . Moreover, this basic recursion holds: \( S_k(x)= (x-k) {S_k(x-1) \over x} + k S_{k-1}(x+1). \)
Explicit representations involving Stirling numbers can be deduced with Lagrange's interpolation formula:
\( \begin{align}S_k(x)&= \sum_{n=0}^k (-1)^{k-n} S_{k+n,n} {{x+n \choose n} {x+k+1 \choose k-n} \over {k+n \choose n}} \\ &= \sum_{n=0}^k (-1)^n s_{k+n+1,n+1} {{x-k \choose n} {x-k-n-1 \choose k-n} \over {k+n \choose k}}\\ &= k! \sum_{j=0}^k (-1)^{k-j}\sum_{m=j}^k {x+m\choose m}{m\choose j}L_{k+m}^{(-k-j)}(-j).\end{align} \)
Here, \( L_n^{(\alpha)} \) are Laguerre polynomials.
These following relations hold as well:
\( {k+m \choose k} S_k(x-m)= \sum_{i=0}^k (-1)^{k-i} {k+m \choose i} S_{k-i+m,m} \cdot S_i(x), \)
where \( S_{k,n} \) is the Stirling number of the second kind and
\( {k-m \choose k} S_k(x+m)= \sum_{i=0}^k {k-m \choose i} s_{m,m-k+i} \cdot S_i(x), \)
where \( s_{k,n} is the Stirling number of the first kind.
By differentiating the generating function it readily follows that
\( S_k^\prime(x)=-\sum_{j=0}^{k-1} {k\choose j} S_j(x) \frac{B_{k-j}}{k-j}. \)
Relations to other polynomials
Closely related to Stirling polynomials are Nørlund polynomials (or generalized Bernoulli polynomials) with generating function
\( \left( {t \over {e^t-1}} \right) ^a e^{z t}= \sum_{k=0}^\infty B^{(a)}_k(z){t^k \over k!}. \)
The relation is given by \( S_k(x)= B_k^{(x+1)}(x+1). \)
See also
Bernoulli polynomials
Difference polynomials
References
Erdeli, A., Magnus, W. and Oberhettinger, F and Tricomi, F. G. Higher Transcendental Functions. Volume III:. New York.
External links
Every Eisenstein integer a + bω whose norm a2 − ab + b2 is a rational prime is an Eisenstein prime. In fact, every Eisenstein prime is of this form, or is a product of a unit and a rational prime congruent to 2 mod 3.
This is a discrete Fourier transform.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License