.
Shekel function
Shekel function is a multidimensional, multimodal, continuous, deterministic function commonly used as a test function for testing optimization techniques.
The mathematical form of a function in n dimensions with m maxima is:
\( f(\vec{x}) = \sum_{i = 1}^{m} \; \left( c_{i} + \sum\limits_{j = 1}^{n} (x_{j} - a_{ji})^2 \right)^{-1} \)
or, similarly,
\( f(x_1,x_2,...,x_{n-1},x_n) = \sum_{i = 1}^{m} \; \left( c_{i} + \sum\limits_{j = 1}^{n} (x_{j} - a_{ij})^2 \right)^{-1} \)
A Shekel function in 2 dimensions and with 10 maxima
References
Shekel, J. 1971. "Test Functions for Multimodal Search Techniques." Fifth Annual Princeton Conference on Information Science and Systems.
See also
Test functions for optimization
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License