.
Scorer's function
In mathematics, the Scorer's functions are special functions studied by Scorer (1950) and denoted Gi(x) and Hi(x).
They solve the equation
\( y''(x) - x\ y(x) = \frac{1}{\pi} \)
and are given by
\( \mathrm{Gi}(x) = \frac{1}{\pi} \int_0^\infty \sin\left(\frac{t^3}{3} + xt\right)\, dt, \)
\( \mathrm{Hi}(x) = \frac{1}{\pi} \int_0^\infty \exp\left(-\frac{t^3}{3} + xt\right)\, dt. \)
The Scorer's functions can also be defined in terms of Airy functions:
\( \begin{align} \mathrm{Gi}(x) &{}= \mathrm{Bi}(x) \int_x^\infty \mathrm{Ai}(t) \, dt + \mathrm{Ai}(x) \int_0^x \mathrm{Bi}(t) \, dt, \\ \mathrm{Hi}(x) &{}= \mathrm{Bi}(x) \int_{-\infty}^x \mathrm{Ai}(t) \, dt - \mathrm{Ai}(x) \int_{-\infty}^x \mathrm{Bi}(t) \, dt. \end{align} \)
References
Olver, F. W. J. (2010), "Scorer functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248
Scorer, R. S. (1950), "Numerical evaluation of integrals of the form I=\int^{x_2}_{x_{1}}f(x)e^{i\phi(x)}dx and the tabulation of the function {\rm Gi} (z)=(1/\pi)\int^\infty_0{\rm sin}(uz+\frac 13 u^3)du", The Quarterly Journal of Mechanics and Applied Mathematics 3: 107–112, doi:10.1093/qjmam/3.1.107, ISSN 0033-5614, MR0037604
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License