.
Rogers L-Function
Rogers L-Function:
\( L(x) = 6/(pi^2)[Li_2(x)+1/2lnxln(1-x)]
= 6/(pi^2)[sum_(n=1)^(infty)(x^n)/(n^2)+1/2lnxln(1-x)], \)
where \( Li_2(x) \) is the dilogarithm.
\( L(x)+L(1-x)=1 \)
\( L(x)+L(y)=L(xy)+L((x(1-y))/(1-xy))+L((y(1-x))/(1-xy)) \)
\( 1/2L(x^2)=L(x)-L(x/(1+x)). \)
\( Sum_(k=2)^inftyL(1/(k^2))=1 \)
Rogers, L. J. "On Function Sum Theorems Connected with the Series \( sum_1^(infty)x^n/n^2 \) ." Proc. London Math. Soc. 4, 169-189, 1907.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License