Fine Art

.

In mathematical analysis, the Rademacher–Menchov theorem, introduced by Rademacher (1922) and Menchoff (1923), gives a sufficient condition for a series of orthogonal functions on an interval to converge almost everywhere.

Statement

If the coefficients cν of a series of bounded orthogonal functions on an interval satisfy

\( \sum |c_\nu|^2\log(\nu)^2<\infty \)

then the series converges almost everywhere.

References

Menchoff, D. (1923), "Sur les séries de fonctions orthogonales. (Premiére Partie. La convergence.)." (in French), Fundamenta Mathematicae 4: 82–105, ISSN 0016-2736
Rademacher, Hans (1922), "Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen", Mathematische Annalen (Springer Berlin / Heidelberg) 87: 112–138, ISSN 0025-5831
Zygmund, A. (2002) [1935], Trigonometric series. Vol. I, II, Cambridge Mathematical Library (3rd ed.), Cambridge University Press, ISBN 978-0-521-89053-3, MR1963498

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World