.
q-theta function
In mathematics, the q-theta function is a type of q-series. It is given by
\( \theta(z;q)=\prod_{n=0}^\infty (1-q^nz)\left(1-q^{n+1}/z\right) \)
where one takes 0 ≤ |q| < 1. It obeys the identities
\( \theta(z;q)=\theta\left(\frac{q}{z};q\right)=-z\theta\left(\frac{1}{z};q\right). \)
It may also be expressed as:
\( \theta(z;q)=(z;q)_\infty (q/z;q)_\infty \)
where \( (\cdot \cdot )_\infty \) is the q-Pochhammer symbol.
See also
Jacobi theta function
Ramanujan theta function
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License