Fine Art

.

In algebra, a Mori domain, named after Yoshiro Mori by Querré (1971, 1976), is an integral domain satisfying the ascending chain condition on integral divisorial ideals. Noetherian domains and Krull domains both have this property. A commutative ring is a Krull domain if and only if it is a Mori domain and completely integrally closed.[1] A polynomial ring over a Mori domain need not be a Mori domain. Also, the complete integral closure of a Mori domain need not be a Mori (or, equivalently, Krull) domain.
Notes

Bourbaki AC ch. VII §1 no. 3 th. 2

References

Barucci, Valentina (1983), "On a class of Mori domains", Communications in Algebra 11 (17): 1989–2001, doi:10.1080/00927878308822944, ISSN 0092-7872, MR 709026
Barucci, Valentina (2000), "Mori domains", in Glaz, Sarah; Chapman, Scott T., Non-Noetherian commutative ring theory, Mathematics and its Applications 520, Dordrecht: Kluwer Acad. Publ., pp. 57–73, ISBN 978-0-7923-6492-4, MR 1858157
Mori, Yoshiro (1953), "On the integral closure of an integral domain", Memoirs of the College of Science, University of Kyoto. Series A: Mathematics 27: 249–256
Nishimura, Toshio (1964), "On the V-ideal of an integral domain. V", Bulletin of the Kyoto Gakugei University. Series B, Mathematics and natural science 25: 5–11, MR 0184959
Querré, Julien (1971), "Sur une propiété des anneaux de Krull", Bulletin des Sciences Mathématiques. 2e Série 95: 341–354, ISSN 0007-4497, MR 0299596
Querré, Julien (1975), "Sur les anneaux reflexifs", Canadian Journal of Mathematics 27 (6): 1222–1228, doi:10.4153/CJM-1975-127-5, ISSN 0008-414X, MR 0414537
Querré, J. (1976), Cours d'algèbre, Paris: Masson, MR 0465632

External links

http://webcache.googleusercontent.com/search?q=cache:iU47dsaHjB4J:www.mat.uniroma1.it/people/barucci/preprints/mori.ps+mori+domain&cd=5&hl=en&ct=clnk&gl=us&client=safari

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World