.
Mahler's 3/2 problem
In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers".
A Z-number is a real number x such that the fractional parts
\( \left\lbrace x \left(\frac 3 2\right)^ n \right\rbrace \)
are less than 1/2 for all natural numbers n. Kurt Mahler conjectured in 1968 that there are no Z-numbers.
More generally, for a real number α, define Ω(α) as
\( \Omega(\alpha) = \inf_\theta\left({ \limsup_{n \rightarrow \infty} \left\lbrace{\theta\alpha^n}\right\rbrace - \liminf_{n \rightarrow \infty} \left\lbrace{\theta\alpha^n}\right\rbrace }\right). \)
Mahler's conjecture would thus imply that Ω(3/2) exceeds 1/2. Flatto, Lagarias, and Pollington showed[1] that
\( \Omega\left(\frac p q\right) > \frac 1 p \)
for rational p/q.
References
Flatto, Leopold; Lagarias, Jeffrey C.; Pollington, Andrew D. (1995). "On the range of fractional parts of ζ { (p/q)n }". Acta Arithmetica LXX (2): 125–147. ISSN 0065-1036. Zbl 0821.11038.
Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). Recurrence sequences. Mathematical Surveys and Monographs 104. Providence, RI: American Mathematical Society. ISBN 0-8218-3387-1. Zbl 1033.11006.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License