.
Giambelli's formula
In mathematics, Giambelli's formula, named after Giovanni Giambelli, expresses Schubert classes in terms of special Schubert classes, or Schur functions in terms of complete symmetric functions.
It states
\( \displaystyle \sigma_\lambda= \det(\sigma_{\lambda_i+j-i})_{1\le i,j\le r} \)
where σλ is the Schubert class of a partition λ.
Giambelli's formula is a consequence of Pieri's formula. The Porteous formula is a generalization to morphisms of vector bundles over a variety.
References
Fulton, William (1997), Young tableaux, London Mathematical Society Student Texts 35, Cambridge University Press, ISBN 978-0-521-56144-0, ISBN 978-0-521-56724-4, MR 1464693
Sottile, Frank (2001), "Schubert calculus", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License