.
Dirichlet beta function
In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.
Definition
The Dirichlet beta function is defined as
\( \beta(s) = \sum_{n=0}^\infty \frac{(-1)^n} {(2n+1)^s}, \)
or, equivalently,
\( \beta(s) = \frac{1}{\Gamma(s)}\int_0^{\infty}\frac{x^{s-1}e^{-x}}{1 + e^{-2x}}\,dx. \)
In each case, it is assumed that Re(s) > 0.
Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane:
\( \beta(s) = 4^{-s} \left( \zeta\left(s,{1 \over 4}\right)-\zeta\left( s, {3 \over 4}\right) \right). \)
Another equivalent definition, in terms of the Lerch transcendent, is:
\( \beta(s) = 2^{-s} \Phi\left(-1,s,{{1} \over {2}}\right), \)
which is once again valid for all complex values of s.
Functional equation
The functional equation extends the beta function to the left side of the complex plane Re(s)<0. It is given by
\( \beta(s)=\left(\frac{\pi}{2}\right)^{s-1} \Gamma(1-s) \cos \frac{\pi s}{2}\,\beta(1-s) \)
where Γ(s) is the gamma function.
Special values
Some special values include:
\( \beta(0)= \frac{1}{2}, \)
\( \beta(1)\;=\;\tan^{-1}(1)\;=\;\frac{\pi}{4}, \)
\( \beta(2)\;=\;G, \)
where G represents Catalan's constant, and
\( \beta(3)\;=\;\frac{\pi^3}{32}, \)
\( \beta(4)\;=\;\frac{1}{768}(\psi_3(\frac{1}{4})-8\pi^4), \)
\( \beta(5)\;=\;\frac{5\pi^5}{1536}, \)
\( \beta(7)\;=\;\frac{61\pi^7}{184320}, \)
where \( \psi_3(1/4) \) in the above is an example of the polygamma function. More generally, for any positive integer k:
\( \beta(2k+1)={{{({-1})^k}{E_{2k}}{\pi^{2k+1}} \over {4^{k+1}}(2k)!}}, \)
where \( \!\ E_{n} \) represent the Euler numbers. For integer k ≥ 0, this extends to:
\( \beta(-k)={{E_{k}} \over {2}}. \)
Hence, the function vanishes for all odd negative integral values of the argument.
s | approximate value β(s) | OEIS |
---|---|---|
1/5 | 0.5737108471859466493572665 | |
1/4 | 0.5907230564424947318659591 | |
1/3 | 0.6178550888488520660725389 | |
1/2 | 0.6676914571896091766586909 | A195103 |
1 | 0.7853981633974483096156608 | A003881 |
2 | 0.9159655941772190150546035 | A006752 |
3 | 0.9689461462593693804836348 | A153071 |
4 | 0.9889445517411053361084226 | A175572 |
5 | 0.9961578280770880640063194 | A175571 |
6 | 0.9986852222184381354416008 | A175570 |
7 | 0.9995545078905399094963465 | |
8 | 0.9998499902468296563380671 | |
9 | 0.9999496841872200898213589 | |
10 | 0.9999831640261968774055407 |
See also
Hurwitz zeta function
References
Glasser, M. L. (1972). "The evaluation of lattice sums. I. Analytic procedures". J. Math. Phys. 14: 409. doi:10.1063/1.1666331.
J. Spanier and K. B. Oldham, An Atlas of Functions, (1987) Hemisphere, New York.
Weisstein, Eric W., "Dirichlet Beta Function" from MathWorld.
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License