.
Catalan's minimal surface
In differential geometry, Catalan's minimal surface is a minimal surface originally studied by Eugène Charles Catalan in 1855.[1]
It has the special property of being the minimal surface that contains a cycloid as a geodesic. It is also swept out by a family of parabolae.[2]
The surface has parametric equation:[3]
\( \( \begin{align} x(u,v) &= u - \cosh(v)\sin(u)\\ y(u,v) &= 1 - \cos(u)\cosh(v)\\ z(u,v) &= 4 \sin(u/2) \sinh(v/2) \end{align} \)
External links
Weisstein, Eric W. "Catalan's Surface." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/CatalansSurface.html
Weiqing Gu, The Library of Surfaces. http://www.math.hmc.edu/~gu/curves_and_surfaces/surfaces/catalan.html
References
Catalan, E. "Mémoire sur les surfaces dont les rayons de courbures en chaque point, sont égaux et les signes contraires." Comptes Rendus Acad. Sci. Paris 41, 1019–1023, 1855.
Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny, Minimal Surfaces, Volume 1. Springer 2010
Gray, A. "Catalan's Minimal Surface." Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 692–693, 1997
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License