.
Brauer tree
In mathematics, in the theory of finite groups, a Brauer tree is a tree that encodes the characters of a block with cyclic defect group of a finite group. In fact, the trees encode the group algebra up to Morita equivalence. Such algebras coming from Brauer trees are called Brauer tree algebras.
Feit (1984) described the possibilities for Brauer trees.
References
Feit, Walter (1984), "Possible Brauer trees", Illinois Journal of Mathematics 28 (1): 43–56, ISSN 0019-2082, MR 730710
Hiss, G.; Lux, K. (1989), Brauer trees of sporadic groups, Oxford Science Publications, The Clarendon Press Oxford University Press, ISBN 978-0-19-853381-8, MR 1033265
Alperin, J.L. (1986), Local representation theory. Modular representations as an introduction to local representation theory of finite groups, Cambridge Studies in Advanced Mathematics 11, Cambridge etc.: Cambridge University Press, ISBN 0-521-44926-X, Zbl 0593.20003
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License