.
Brahmagupta matrix
In mathematics, the following matrix was given by Indian mathematician Brahmagupta:[1]
\( B(x,y) = \begin{bmatrix} x & y \\ \pm ty & \pm x \end{bmatrix}. \)
It satisfies
\( B(x_1,y_1) B(x_2,y_2) = B(x_1 x_2 \pm ty_1 y_2,x_1 y_2 \pm y_1 x_2).\,\)
Powers of the matrix are defined by
\( B^n = \begin{bmatrix} x & y \\ ty & x \end{bmatrix}^n = \begin{bmatrix} x_n & y_n \\ ty_n & x_n \end{bmatrix} \equiv B_n.\)
The \( \ x_n \) and \( \ y_n\) are called Brahmagupta polynomials. The Brahmagupta matrices can be extended to negative integers:
\( B^{-n} = \begin{bmatrix} x & y \\ ty & x \end{bmatrix}^{-n} = \begin{bmatrix} x_{-n} & y_{-n} \\ ty_{-n} & x_{-n} \end{bmatrix} \equiv B_{-n}.\)
See also
Brahmagupta's identity
Brahmagupta's function
References
"The Brahmagupta polynomials" (PDF). Suryanarayanan. The Fibonacci Quarterly. Retrieved 3 November 2011.
External links
Eric Weisstein. Brahmagupta Matrix, MathWorld, 1999.
Weisstein, Eric W. (2003). CRC Concise Encyclopedia of Mathematics. Florida: CRC Press. p. 282. ISBN 1-58488-347-2.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License