Fine Art

.

In dynamical systems theory, the Bogdanov map is a chaotic 2D map. It is given by the transformation:

\( \begin{cases} x_{n+1} = x_n + y_{n+1}\\ y_{n+1} = y_n + \epsilon y_n + k x_n (x_n - 1) + \mu x_n y_n \end{cases} \)

See also

List of chaotic maps

References

Arrowsmith, D. K.; Cartwright, J. H. E.; Lansbury, A. N.; and Place, C. M. "The Bogdanov Map: Bifurcations, Mode Locking, and Chaos in a Dissipative System." Int. J. Bifurcation Chaos 3, 803–842, 1993.

Bogdanov, R. "Bifurcations of a Limit Cycle for a Family of Vector Fields on the Plane." Selecta Math. Soviet 1, 373–388, 1981.

External links

Bogdanov map at MathWorld


Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World