.
Berger's inequality for Einstein manifolds
In mathematics — specifically, in differential topology — Berger's inequality for Einstein manifolds is the statement that any 4-dimensional Einstein manifold (M, g) has non-negative Euler characteristic χ(M) ≥ 0. The inequality is named after the French mathematician Marcel Berger.
See also
Hitchin–Thorpe inequality
References
Besse, Arthur L. (1987). Einstein Manifolds. Classics in Mathematics. Berlin: Springer. ISBN 3-540-74120-8.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License