Fine Art

.

In mathematics, the Bateman function (or k-function) kn is a special case of the confluent hypergeometric function studied by Bateman (1931). Bateman defined it by

\( \displaystyle k_n(x) = \frac{2}{\pi}\int_0^{\pi/2}\cos(x\tan\theta-n\theta) \, d\theta \)

References

Bateman, H. (1931), "The k-function, a particular case of the confluent hypergeometric function", Transactions of the American Mathematical Society 33 (4): 817–831, doi:10.2307/1989510, ISSN 0002-9947, MR1501618
Hazewinkel, Michiel, ed. (2001), "Bateman function", Encyclopedia of Mathematics, Springer, ISBN 978-1556080104

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World