.
Baer differential equation
The Baer differential equation is given by
\( (x-a_1)(x-a_2)y^('')+1/2[2x-(a_1+a_2)]y^'-(p^2x+q^2)y=0, \)
where the Baer "wave equation" is
\( (x-a_1)(x-a_2)y^('')+1/2[2x-(a_1+a_2)]y^'-(k^2x^2-p^2x+q^2)y=0
References \)
Moon and Spencer 1961, pp. 156-157; Zwillinger 1997, p. 121.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License