.
Anger function
In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as
\( \mathbf{J}_\nu(z)=\frac{1}{\pi} \int_0^\pi \cos (\nu\theta-z\sin\theta) \,d\theta \)
and is closely related to Bessel functions.
The Weber function, introduced by H. F. Weber (1879), is a closely related function defined by
\( \mathbf{E}_\nu(z)=\frac{1}{\pi} \int_0^\pi \sin (\nu\theta-z\sin\theta) \,d\theta \)
and is closely related to Bessel functions of the second kind.
Relation between Weber and Anger functions
The Anger and Weber functions are related by
\( \sin(\pi \nu)\mathbf{J}_\nu(z) = \cos(\pi\nu)\mathbf{E}_\nu(z)-\mathbf{E}_{-\nu}(z) \)
\( -\sin(\pi \nu)\mathbf{E}_\nu(z) = \cos(\pi\nu)\mathbf{J}_\nu(z)-\mathbf{J}_{-\nu}(z) \)
so in particular if ν is not an integer they can be expressed as linear combinations of each other. If ν is an integer then Anger functions \( J_ν \) are the same as Bessel functions \( J_ν \) , and Weber functions can be expressed as finite linear combinations of Struve functions.
Differential equations
The Anger and Weber functions are solutions of inhomogenous forms of Bessel's equation \( z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = 0 \). More precisely, the Anger functions satisfy the equation
\( z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = (z-\nu)\sin(\pi z)/\pi \)
and the Weber functions satisfy the equation
\( z^2y^{\prime\prime} + zy^\prime +(z^2-\nu^2)y = -((z+\nu) + (z-\nu)\cos(\pi z))/\pi. \)
References
Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 12", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, pp. 498, ISBN 978-0486612720, MR0167642.
C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig, 5 (1855) pp. 1–29
Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248
Prudnikov, A.P. (2001), "Anger function", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1556080104
Prudnikov, A.P. (2001), "Weber function", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1556080104
G.N. Watson, "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952)
H.F. Weber, Zurich Vierteljahresschrift, 24 (1879) pp. 33–76
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License