Fine Art

.

In mathematics, Angelescu polynomials πn(x) are generalizations of the Laguerre polynomials introduced by Angelescu (1938) given by the generating function

\( \displaystyle \phi\left(\frac t{1-t}\right)\exp\left(-\frac{xt}{1-t}\right)=\sum_{n=0}^\infty\pi_n(x)t^n \)

Boas & Buck (1958, p.41)

References

Angelescu, A. (1938), "Sur certains polynomes généralisant les polynomes de Laguerre.", C. R. Acad. Sci. Roumanie (in French) 2: 199–201, JFM 64.0328.01
Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. 19, Berlin, New York: Springer-Verlag, MR 0094466

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World