.
Affine representation
V. de Paiva. "A dialectica-like model of linear logic". In Proc. Conf. on Category Theory and Computer Science, Springer-Verlag Lecture Notes in Computer Science 389, pp. 341–356, Manchester, September 1989.
An affine representation of a topological (Lie) group G on an affine space A is a continuous (smooth) group homomorphism from G to the automorphism group of A, the affine group Aff(A). Similarly, an affine representation of a Lie algebra g on A is a Lie algebra homomorphism from g to the Lie algebra aff(A) of the affine group of A.
An example is the action of the Euclidean group E(n) upon the Euclidean space En.
Since the affine group in dimension n is a matrix group in dimension n + 1, an affine representation may be thought of as a particular kind of linear representation. We may ask whether a given affine representation has a fixed point in the given affine space A. If it does, we may take that as origin and regard A as a vector space: in that case, we actually have a linear representation in dimension n. This reduction depends on a group cohomology question, in general.
See also
Group action
Projective representation
References
Remm, Elisabeth; Goze, Michel (2003), "Affine Structures on abelian Lie Groups", Linear Algebra and its Applications 360: 215–230, arXiv:math/0105023, doi:10.1016/S0024-3795(02)00452-4.
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License