.
Continuous Hahn polynomials
In mathematics, the continuous Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by
\( p_n(x;a,b,c,d)= i^n\frac{(a+c)_n(a+d)_n}{n!}{}_3F_2(-n,n+a+b+c+d-1,a+ix;a+c,a+d;1) \)
Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.
Closely related polynomials include the dual Hahn polynomials Rn(x;γ,δ,N), the Hahn polynomials, and the continuous dual Hahn polynomials \( S_n(x;a,b,c) \). These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials \( Q_n(x;α,β, N;q) \), and so on.
Relation to other polynomials
Wilson polynomials, a generalization of continuous Hahn polynomials
References
Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License