ART

.

In mathematics, a Böhmer integral is an integral introduced by Böhmer (1939) generalizing the Fresnel integrals.

There are two versions, given by

\( \displaystyle C(x,\alpha) = \int_x^\infty t^{\alpha-1}\cos(t) \, dt \)
\( \displaystyle S(x,\alpha) = \int_x^\infty t^{\alpha-1}\sin(t) \, dt \)


References

Böhmer, Paul Eugen (1939), Differenzengleichungen und bestimmte Integrale. (in German), Leipzig, K. F. Koehler Verlag

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Hellenica World - Scientific Library