ART

.

In mathematics, the Blasius function, introduced by Blasius (1908), is the solution to the third-order differential equation

\( 2f_{xxx} + f\,f_{xx}=0 \)

with the boundary conditions \( f(0) = f_x(0) = 0, f_x( \infty ) = 1. \)

See also

Blasius boundary layer

References

Blasius, H. (1908), "Grenzschichten in Flüssigkeiten mit kleiner Reibung", Zeitschrift für Mathematik und Physik (in German) 56: 1–37
Boyd, John P. (1999), "The Blasius function in the complex plane", Experimental Mathematics 8 (4): 381–394, doi:10.1080/10586458.1999.10504626, ISSN 1058-6458, MR 1737233

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Hellenica World - Scientific Library