.
Al-Salam–Chihara polynomials
In mathematics, the Al-Salam–Chihara polynomials Qn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Chihara (1976). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.8) give a detailed list of the properties of Al-Salam–Chihara polynomials.
Definition
The Al-Salam–Chihara polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by
\( Q_n(x;a,b;q) = \frac{(ab;q)_n}{a^n}{}_3\phi_2(q^{-n}, ae^{i\theta}, ae^{-i\theta}; ab,0; q,q) \)
where x = cos(θ).
References
Al-Salam, W. A.; Chihara, Theodore Seio (1976), "Convolutions of orthonormal polynomials", SIAM Journal on Mathematical Analysis 7 (1): 16–28, doi:10.1137/0507003, ISSN 0036-1410, MR 0399537
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Al-Salam–Chihara polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License