In[1134]:=
Out[1134]=
In[1135]:=
Out[1135]=
In[1136]:=
Out[1136]=
In[1137]:=
Out[1137]=
In[1138]:=
Out[1138]=
In[1139]:=
Out[1139]=
In[1140]:=
Out[1140]=
In[1141]:=
Out[1141]=
In[1142]:=
Out[1142]//InputForm=
Graphics3D[GraphicsComplex[{{-2.1891316927627362, -0.43999927751952106, -0.013079848768152672},
{-2.113112057122501, 0.3367313348429727, -0.6383082636823472}, {-2.0896036681725794, 0.1780010685578043,
0.7667725376291019}, {-2.0135841186968046, 0.9547317275347241, 0.14154417014827142},
{-1.813433218652889, -1.1890700056460202, 0.5325791114034628}, {-1.7970796161752483, -1.2407509409575082,
-0.465950628069194}, {-1.7139051940627312, -0.5710696595686949, 1.3124314978007183},
{-1.6952628882010727, 1.236570548730087, -0.763573826318982}, {-1.6740772618969646, 0.016025589947522238,
-1.4775914541325832}, {-1.5365118649650804, 0.3771949701321228, 1.5757294257265324},
{-1.478758471843968, -0.9589120731477122, -1.3710685771030835}, {-1.4135096501038364, 1.6339715764608704,
0.564088676411939}, {-1.2562280929755274, 0.9158648038346348, -1.6028570167692215},
{-1.1186627822081179, 1.2770342306336562, 1.4504639105232606}, {-1.095188366355519, 1.9158103688469388,
-0.34102934937074963}, {-1.079551608784198, -1.8667130675593797, 0.5796711843799784},
{-1.0631980063065583, -1.9183940028708695, -0.4188585550926784},
{-0.9185118821641872, -0.8667675025470706, 1.8414988517784538}, {-0.8641760163880369, 0.11511314039664933,
-2.0557277960702636}, {-0.7448768619752762, -1.6365551350610716, -1.3239765041265688},
{-0.7411185530665364, 0.08149712715374535, 2.104796779704268}, {-0.6688572263350393, -0.8598245226985798,
-1.949204919040764}, {-0.5485847083011951, 1.9384508751756733, 0.9630840845278554},
{-0.5264598055767001, -1.6675191659850612, 1.3886280724774107}, {-0.3848151454367455, 1.396897573218744,
-1.6990180777056831}, {-0.32326938414510004, 0.9813363410408561, 1.9795312170676278},
{-0.2852871208465904, 2.0148979192960677, -0.9191656913084285}, {-0.2678046944080133, -2.214091845849245,
0.11020879888505712}, {-0.23026356396991382, 2.220289742985473, 0.057966135493963386},
{-0.007236943197845466, -0.596145934759616, 2.1518888526807847},
{0.007236931150746909, 0.5961459097807603, -2.1518888570067234}, {0.24680860359734996, 1.6427530321972923,
1.49215143850559}, {0.24724973645776188, -1.7580669783822054, -1.3543028064793734},
{0.28528710879948743, -2.0148979442749284, 0.9191656869824893}, {0.32326937209799883, -0.9813363660197153,
-1.9795312213935687}, {0.3848151333896434, -1.3968975981976066, 1.6990180733797422},
{0.5420965511009167, -2.1150042954001145, -0.4679275430526217}, {0.6073115168073125, 1.275385794860831,
-1.7293444396829585}, {0.6688572142879349, 0.8598244977197188, 1.9492049147148205},
{0.7068395808348468, 1.893386181087624, -0.9494920901356572}, {0.7411185410194391, -0.08149715213259212,
-2.104796784030207}, {0.7618630344631238, 2.098777899664341, 0.02763983314115874},
{0.8641760043409356, -0.1151131653755032, 2.0557277917443213}, {1.0567098491062765, 1.74184058264643,
0.914015096567913}, {1.0951883543084153, -1.9158103938257978, 0.3410293450448097},
{1.179145028740499, -1.5903723182876903, -1.032666886226268}, {1.2551646643807355, -0.8136417059251985,
-1.6578953011404625}, {1.2562280809284267, -0.9158648288134886, 1.6028570124432833},
{1.3411930628649866, 0.5977426679842596, -1.6822523070819695}, {1.4787584597968637, 0.958912048168853,
1.3710685727771434}, {1.5022328532960123, 1.5976882979597753, -0.4204246993079683},
{1.6740773474048893, -0.016025590813154463, 1.4775914916242538}, {1.695262876153964, -1.236570573708939,
0.7635738219930481}, {1.732236831947997, -1.3911784167133736, -0.22370999812883746},
{1.7970796041281463, 1.2407509159786527, 0.46595062374325674}, {1.8552391862262816, -0.13440188580834322,
-1.2353508241922266}, {1.8942848660724838, 0.7969365695585727, -0.8732954189845363},
{2.1131122029227516, -0.3367313208058095, 0.6383083270187264}, {2.150086000869437, -0.49133920282625054,
-0.34897556076547404}, {2.1891317782706645, 0.4399992766538835, 0.013079886259826964}},
Polygon[{{19, 13, 25, 31}, {31, 25, 38}, {25, 27, 40, 38}, {13, 8, 15, 27, 25}, {15, 29, 27},
{27, 29, 42, 40}, {12, 23, 29, 15}, {12, 14, 23}, {14, 26, 32, 23}, {23, 32, 44, 42, 29}, {26, 39, 32},
{32, 39, 50, 44}, {31, 38, 49, 41}, {49, 57, 56}, {57, 60, 59, 56}, {38, 40, 51, 57, 49}, {60, 58, 59},
{59, 58, 53, 54}, {51, 55, 60, 57}, {40, 42, 51}, {42, 44, 55, 51}, {55, 50, 52, 58, 60}, {44, 50, 55},
{50, 39, 43, 52}, {49, 56, 47, 41}, {41, 47, 35}, {47, 46, 33, 35}, {56, 59, 54, 46, 47}, {46, 37, 33},
{37, 45, 34, 28}, {54, 45, 37, 46}, {54, 53, 45}, {58, 52, 48, 53}, {53, 48, 36, 34, 45}, {52, 43, 48},
{48, 43, 30, 36}, {35, 33, 20, 22}, {22, 20, 11}, {20, 17, 6, 11}, {33, 37, 28, 17, 20}, {28, 16, 17},
{17, 16, 5, 6}, {34, 24, 16, 28}, {34, 36, 24}, {36, 30, 18, 24}, {24, 18, 7, 5, 16}, {30, 21, 18},
{18, 21, 10, 7}, {22, 11, 9, 19}, {19, 9, 13}, {9, 2, 8, 13}, {11, 6, 1, 2, 9}, {2, 4, 8},
{8, 4, 12, 15}, {1, 3, 4, 2}, {6, 5, 1}, {5, 7, 3, 1}, {3, 10, 14, 12, 4}, {7, 10, 3}, {10, 21, 26, 14},
{19, 31, 41, 35, 22}, {21, 30, 43, 39, 26}}]]]
In[1143]:=
Out[1143]=
In[1144]:=
Out[1144]=
In[1145]:=
Out[1145]=
Johnson Polyhedra