In[818]:=
Out[818]=
In[819]:=
Out[819]=
In[820]:=
Out[820]=
In[821]:=
Out[821]=
In[822]:=
Out[822]=
In[823]:=
Out[823]=
In[824]:=
Out[824]=
In[825]:=
Out[825]=
In[826]:=
Out[826]//InputForm=
Graphics3D[GraphicsComplex[{{-2.198767995913151, 0.27954754528088144, 0.270814543951643},
{-2.1382132379890937, -0.16883973251558915, -0.6209712881869004},
{-2.1044579137783863, -0.7145044938281598, 0.2163521537094391}, {-1.9126506075626788, 1.1432796675439263,
-0.14403923878931785}, {-1.858033345688485, 0.26037553727708895, 1.2107785497760042},
{-1.8520958496386213, 0.6948923897474538, -1.0358250709278596}, {-1.7637232635537219, -0.7336765018319523,
1.1563161595337985}, {-1.6994989312627793, -0.913517596117113, -1.1239470694483074},
{-1.6657436070520737, -1.4591823574296818, -0.28662362755197307}, {-1.395085686565052, 1.657923468273771,
0.5395310289396692}, {-1.3613303623543447, 1.1122587069612055, 1.3768544708360078},
{-1.3553928663044934, 1.5467755594315686, -0.8697491498678603},
{-1.2461583425561094, -0.21903270110210238, 1.8398864272627828},
{-1.2365512721393623, 0.48403033487957414, -1.795194590284646}, {-1.1422411900045992, -0.5100217042294654,
-1.84965698052685}, {-1.1144233618437573, -1.4902033180124061, 1.234270082073348},
{-1.053868603919698, -1.938590595808875, 0.3424842499348065}, {-0.9055065201194348, -1.4077028599098356,
-1.4780049405610725}, {-0.8717511959087327, -1.9533676212224045, -0.6406814986647363},
{-0.8378279453068844, 2.0614193601614113, -0.18617888213887518}, {-0.7494553592219708, 0.6328504685820194,
2.005962348322789}, {-0.7398482888052433, 1.3359135045636819, -1.6291186692246469},
{-0.6417858045156051, 1.7799057997698877, 1.1857969173377962}, {-0.5968584408461484, -0.9755595172825545,
1.9178403498023315}, {-0.3011339820789163, 0.591235640962165, -2.1320944504860573},
{-0.20682389994416384, -0.40281639814687276, -2.186556840728261},
{-0.15814413411983552, -1.72023738088408, 1.414864568540923}, {-0.09758937619577444, -2.168624658680549,
0.5230787364023813}, {-0.08452806325744099, 2.183401691657535, 0.46008700625925464},
{-0.02991080138322942, 1.300497561390707, 1.814904794824583}, {0.02991076994100063, -1.3004975538272412,
-1.814904800762482}, {0.08452803181519265, -2.1834016840940804, -0.4600870121971616},
{0.0975893447535421, 2.1686246662440056, -0.5230787423402882}, {0.15814410267760137, 1.7202373884475353,
-1.4148645744788282}, {0.20682386850193502, 0.4028164057103455, 2.186556834790372},
{0.30113395063669457, -0.5912356333986993, 2.132094444548159}, {0.5968584094039142, 0.9755595248460166,
-1.9178403557402386}, {0.6417857730733727, -1.7799057922064325, -1.1857969232757042},
{0.7398482573630039, -1.3359134970002249, 1.629118663286739}, {0.7494553277797615, -0.6328504610185467,
-2.0059623542606846}, {0.8378279138646538, -2.0614193525979565, 0.1861788762009718},
{0.8717511644665092, 1.9533676287858668, 0.6406814927268268}, {0.9055064886772006, 1.4077028674733014,
1.478004934623169}, {1.0538685724774586, 1.9385906033723443, -0.34248425587270986},
{1.1144233304015214, 1.4902033255758684, -1.2342700880112534}, {1.1422411585623669, 0.5100217117929363,
1.8496569745889544}, {1.2365513257726801, -0.48403032295658777, 1.795194652098417},
{1.2461583111138788, 0.219032708665568, -1.839886433200689}, {1.3553928348622628, -1.5467755518681063,
0.8697491439299544}, {1.3613303309121336, -1.1122586993977397, -1.3768544767739086},
{1.395085655122834, -1.6579234607103104, -0.5395310348775725}, {1.6657435756098342, 1.4591823649931512,
0.28662362161406435}, {1.6994988998205416, 0.9135176036805804, 1.123947063510402},
{1.763723232111486, 0.7336765093954197, -1.1563161654717038}, {1.8520959558515189, -0.6948923751301391,
1.035825174614455}, {1.8580334062520458, -0.26037557667025923, -1.2107785900235508},
{1.912650668126236, -1.1432797069370964, 0.14403919854176955}, {2.104457882336151, 0.714504501391629,
-0.2163521596473425}, {2.1382132916224075, 0.1688397444385773, 0.6209713500006627},
{2.1987681133394155, -0.27954761369484815, -0.27081460540371743}},
Polygon[{{25, 22, 34, 37}, {37, 34, 45}, {34, 33, 44, 45}, {22, 12, 20, 33, 34}, {20, 29, 33},
{33, 29, 42, 44}, {10, 23, 29, 20}, {10, 11, 23}, {11, 21, 30, 23}, {23, 30, 43, 42, 29}, {21, 35, 30},
{30, 35, 46, 43}, {37, 45, 54, 48}, {48, 54, 56}, {54, 58, 60, 56}, {45, 44, 52, 58, 54}, {58, 59, 60},
{60, 59, 55, 57}, {52, 53, 59, 58}, {44, 42, 52}, {42, 43, 53, 52}, {53, 46, 47, 55, 59}, {43, 46, 53},
{46, 35, 36, 47}, {48, 56, 50, 40}, {50, 51, 38}, {51, 41, 32, 38}, {56, 60, 57, 51, 50}, {41, 28, 32},
{32, 28, 17, 19}, {57, 49, 41, 51}, {57, 55, 49}, {55, 47, 39, 49}, {49, 39, 27, 28, 41}, {47, 36, 39},
{39, 36, 24, 27}, {50, 38, 31, 40}, {40, 31, 26}, {31, 18, 15, 26}, {38, 32, 19, 18, 31}, {18, 8, 15},
{8, 9, 3, 2}, {19, 9, 8, 18}, {19, 17, 9}, {28, 27, 16, 17}, {17, 16, 7, 3, 9}, {27, 24, 16},
{16, 24, 13, 7}, {26, 15, 14, 25}, {25, 14, 22}, {14, 6, 12, 22}, {15, 8, 2, 6, 14}, {6, 4, 12},
{12, 4, 10, 20}, {2, 1, 4, 6}, {2, 3, 1}, {3, 7, 5, 1}, {1, 5, 11, 10, 4}, {7, 13, 5}, {5, 13, 21, 11},
{25, 37, 48, 40, 26}, {13, 24, 36, 35, 21}}]]]
In[827]:=
Out[827]=
In[828]:=
Out[828]=
In[829]:=
Out[829]=
Johnson Polyhedra
Geometry