In[303]:=
Out[303]=
In[304]:=
Out[304]=
In[305]:=
Out[305]=
In[306]:=
Out[306]=
In[307]:=
Out[307]=
In[308]:=
Out[308]=
In[309]:=
Out[309]=
In[310]:=
Out[310]=
In[311]:=
Out[311]//InputForm=
Graphics3D[GraphicsComplex[{{(-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6},
{(-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0, (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6},
{-(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12},
{-(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12},
{-(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12},
{-(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12},
{-1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12},
{-1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
{-1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}, {-1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12,
(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12}, {(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2},
{(-3 - 2*Sqrt[2] + Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12},
{(-3 - 2*Sqrt[2] + Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12},
{(-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12}, {(-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6,
(3 - 2*Sqrt[2] + Sqrt[5])/12}, {(-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2])},
{(-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6},
{(-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2])},
{(-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6}, {(-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6,
(-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0}, {(-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6, (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0},
{(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12},
{(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12}, {(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2,
(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
{0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6, (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12}, {0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6,
(1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6}, {0, (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12},
{0, (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6}, {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2,
(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
{(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2,
(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12}, {(1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0},
{(1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0}, {(3 - 2*Sqrt[2] + Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12,
-(2 + Sqrt[10])/(6*Sqrt[2])}, {(3 - 2*Sqrt[2] + Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6},
{(3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2])},
{(3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6},
{(3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12},
{(3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12},
{(3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12}, {(3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6,
(3 - 2*Sqrt[2] + Sqrt[5])/12}, {(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2}, {1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12,
(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}, {1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
{1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}, {1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12,
(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12}, {(Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12},
{(Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12}, {(Sqrt[2] + Sqrt[5])/6, (3 - 2*Sqrt[2] + Sqrt[5])/12,
(-3 - 2*Sqrt[2] + Sqrt[5])/12}, {(Sqrt[2] + Sqrt[5])/6, (3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12},
{(1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6}, {(1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0,
(1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6}}, Polygon[{{5, 39, 16}, {22, 56, 45}, {22, 45, 5}, {16, 39, 56}, {16, 56, 22}, {39, 5, 45}, {22, 5, 16},
{39, 45, 56}, {35, 33, 1}, {28, 26, 60}, {33, 35, 60}, {1, 33, 26}, {28, 35, 1}, {1, 26, 28}, {33, 60, 26}, {28, 60, 35}, {14, 13, 23},
{48, 47, 38}, {23, 47, 48}, {13, 38, 47}, {48, 38, 14}, {13, 14, 38}, {23, 13, 47}, {48, 14, 23}, {24, 11, 12}, {50, 37, 49}, {50, 49, 24},
{11, 49, 37}, {12, 37, 50}, {12, 11, 37}, {11, 24, 49}, {50, 24, 12}, {40, 6, 15}, {55, 21, 46}, {6, 46, 21}, {55, 40, 15}, {15, 21, 55},
{6, 40, 46}, {15, 6, 21}, {55, 46, 40}, {36, 2, 34}, {59, 25, 27}, {59, 36, 34}, {34, 2, 25}, {2, 36, 27}, {2, 27, 25}, {34, 25, 59},
{59, 27, 36}, {51, 30, 7}, {31, 10, 54}, {30, 54, 10}, {31, 51, 7}, {7, 10, 31}, {7, 30, 10}, {31, 54, 51}, {30, 51, 54}, {41, 3, 18},
{58, 20, 43}, {43, 20, 3}, {41, 18, 58}, {20, 58, 18}, {43, 3, 41}, {20, 18, 3}, {41, 58, 43}, {29, 52, 8}, {9, 32, 53}, {9, 53, 29},
{8, 52, 32}, {8, 32, 9}, {9, 29, 8}, {52, 53, 32}, {52, 29, 53}, {17, 4, 42}, {57, 44, 19}, {19, 44, 4}, {17, 42, 57}, {17, 57, 19},
{44, 42, 4}, {19, 4, 17}, {44, 57, 42}}]]]
In[312]:=
Out[312]=
In[313]:=
Out[313]=
In[314]:=
Out[314]=