Hellenica World

Octahedron 10-Compound

In[303]:=

"OctahedronTenCompound_2.gif"

Out[303]=

"OctahedronTenCompound_3.gif"

In[304]:=

"OctahedronTenCompound_4.gif"

Out[304]=

"OctahedronTenCompound_5.gif"

In[305]:=

"OctahedronTenCompound_6.gif"

Out[305]=

"OctahedronTenCompound_7.gif"

In[306]:=

"OctahedronTenCompound_8.gif"

Out[306]=

"OctahedronTenCompound_9.gif"

In[307]:=

"OctahedronTenCompound_10.gif"

Out[307]=

"OctahedronTenCompound_11.gif"

In[308]:=

"OctahedronTenCompound_12.gif"

Out[308]=

"OctahedronTenCompound_13.gif"

In[309]:=

"OctahedronTenCompound_14.gif"

Out[309]=

"OctahedronTenCompound_15.gif"

In[310]:=

"OctahedronTenCompound_16.gif"

Out[310]=

"OctahedronTenCompound_17.gif"

In[311]:=

"OctahedronTenCompound_18.gif"

Out[311]//InputForm=

Graphics3D[GraphicsComplex[{{(-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6},
   {(-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0, (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6},
   {-(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12},
   {-(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12},
   {-(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12},
   {-(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12},
   {-1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12},
   {-1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
   {-1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}, {-1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12,
    (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12}, {(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2},
   {(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2},
   {(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2},
   {(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2},
   {(-3 - 2*Sqrt[2] + Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12},
   {(-3 - 2*Sqrt[2] + Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12},
   {(-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12}, {(-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6,
    (3 - 2*Sqrt[2] + Sqrt[5])/12}, {(-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2])},
   {(-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6},
   {(-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2])},
   {(-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6}, {(-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6,
    (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0}, {(-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6, (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0},
   {(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12},
   {(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12}, {(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2,
    (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
   {0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6, (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12}, {0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6,
    (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6}, {0, (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12},
   {0, (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6}, {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2,
    (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
   {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2,
    (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12}, {(1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (-2 + Sqrt[2] - Sqrt[5]*(2 + Sqrt[2]))/12, 0},
   {(1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6, (1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0}, {(3 - 2*Sqrt[2] + Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12,
    -(2 + Sqrt[10])/(6*Sqrt[2])}, {(3 - 2*Sqrt[2] + Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6},
   {(3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2])},
   {(3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6},
   {(3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (-3 + 2*Sqrt[2] - Sqrt[5])/12},
   {(3 + 2*Sqrt[2] - Sqrt[5])/12, -(2 + Sqrt[10])/(6*Sqrt[2]), (3 - 2*Sqrt[2] + Sqrt[5])/12},
   {(3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12}, {(3 + 2*Sqrt[2] - Sqrt[5])/12, (Sqrt[2] + Sqrt[5])/6,
    (3 - 2*Sqrt[2] + Sqrt[5])/12}, {(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, -1/2},
   {(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, 1/2},
   {(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, -1/2},
   {(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, 1/2}, {1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12,
    (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}, {1/2, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
   {1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}, {1/2, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12,
    (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12}, {(Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12, (-3 - 2*Sqrt[2] + Sqrt[5])/12},
   {(Sqrt[2] + Sqrt[5])/6, (-3 + 2*Sqrt[2] - Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12}, {(Sqrt[2] + Sqrt[5])/6, (3 - 2*Sqrt[2] + Sqrt[5])/12,
    (-3 - 2*Sqrt[2] + Sqrt[5])/12}, {(Sqrt[2] + Sqrt[5])/6, (3 - 2*Sqrt[2] + Sqrt[5])/12, (3 + 2*Sqrt[2] - Sqrt[5])/12},
   {(1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0, (-1 + Sqrt[5] - Sqrt[3 + Sqrt[5]])/6}, {(1 + Sqrt[5] + Sqrt[3 - Sqrt[5]])/6, 0,
    (1 - Sqrt[5] + Sqrt[3 + Sqrt[5]])/6}}, Polygon[{{5, 39, 16}, {22, 56, 45}, {22, 45, 5}, {16, 39, 56}, {16, 56, 22}, {39, 5, 45}, {22, 5, 16},
    {39, 45, 56}, {35, 33, 1}, {28, 26, 60}, {33, 35, 60}, {1, 33, 26}, {28, 35, 1}, {1, 26, 28}, {33, 60, 26}, {28, 60, 35}, {14, 13, 23},
    {48, 47, 38}, {23, 47, 48}, {13, 38, 47}, {48, 38, 14}, {13, 14, 38}, {23, 13, 47}, {48, 14, 23}, {24, 11, 12}, {50, 37, 49}, {50, 49, 24},
    {11, 49, 37}, {12, 37, 50}, {12, 11, 37}, {11, 24, 49}, {50, 24, 12}, {40, 6, 15}, {55, 21, 46}, {6, 46, 21}, {55, 40, 15}, {15, 21, 55},
    {6, 40, 46}, {15, 6, 21}, {55, 46, 40}, {36, 2, 34}, {59, 25, 27}, {59, 36, 34}, {34, 2, 25}, {2, 36, 27}, {2, 27, 25}, {34, 25, 59},
    {59, 27, 36}, {51, 30, 7}, {31, 10, 54}, {30, 54, 10}, {31, 51, 7}, {7, 10, 31}, {7, 30, 10}, {31, 54, 51}, {30, 51, 54}, {41, 3, 18},
    {58, 20, 43}, {43, 20, 3}, {41, 18, 58}, {20, 58, 18}, {43, 3, 41}, {20, 18, 3}, {41, 58, 43}, {29, 52, 8}, {9, 32, 53}, {9, 53, 29},
    {8, 52, 32}, {8, 32, 9}, {9, 29, 8}, {52, 53, 32}, {52, 29, 53}, {17, 4, 42}, {57, 44, 19}, {19, 44, 4}, {17, 42, 57}, {17, 57, 19},
    {44, 42, 4}, {19, 4, 17}, {44, 57, 42}}]]]

In[312]:=

"OctahedronTenCompound_19.gif"

Out[312]=

"OctahedronTenCompound_20.gif"

In[313]:=

"OctahedronTenCompound_21.gif"

Out[313]=

"OctahedronTenCompound_22.gif"

In[314]:=

"OctahedronTenCompound_23.gif"

Out[314]=

"OctahedronTenCompound_24.gif"