Hellenica World

Gyroelongated square cupola

In[614]:=

"GyroelongatedSquareCupola_2.gif"

Out[614]=

"GyroelongatedSquareCupola_3.gif"

In[615]:=

"GyroelongatedSquareCupola_4.gif"

Out[615]=

"GyroelongatedSquareCupola_5.gif"

In[616]:=

"GyroelongatedSquareCupola_6.gif"

Out[616]=

"GyroelongatedSquareCupola_7.gif"

In[617]:=

"GyroelongatedSquareCupola_8.gif"

Out[617]=

"GyroelongatedSquareCupola_9.gif"

In[618]:=

"GyroelongatedSquareCupola_10.gif"

Out[618]=

"GyroelongatedSquareCupola_11.gif"

In[619]:=

"GyroelongatedSquareCupola_12.gif"

Out[619]=

"GyroelongatedSquareCupola_13.gif"

In[620]:=

"GyroelongatedSquareCupola_14.gif"

Out[620]=

"GyroelongatedSquareCupola_15.gif"

In[621]:=

"GyroelongatedSquareCupola_16.gif"

Out[621]=

"GyroelongatedSquareCupola_17.gif"

In[622]:=

"GyroelongatedSquareCupola_18.gif"

Out[622]//InputForm=

Graphics3D[GraphicsComplex[
  {{0, -(1/Sqrt[2]), 1/Sqrt[2] - Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {0, 1/Sqrt[2], 1/Sqrt[2] - Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 -
        59997409280*#1^3 - 79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 +
        56891539456*#1^8 & , 3, 0]}, {0, Root[1 - 4*#1^2 + 2*#1^4 & , 1, 0],
    Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {0, Root[1 - 4*#1^2 + 2*#1^4 & , 4, 0], Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {-(1/Sqrt[2]), 0, 1/Sqrt[2] - Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {1/Sqrt[2], 0, 1/Sqrt[2] - Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 -
        59997409280*#1^3 - 79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 +
        56891539456*#1^8 & , 3, 0]}, {(-1 - Sqrt[2])/2, -1/2,
    -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {Root[1 - 4*#1^2 + 2*#1^4 & , 1, 0], 0, Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {Root[1 - 4*#1^2 + 2*#1^4 & , 4, 0], 0, Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {Root[1 - 8*#1^2 + 8*#1^4 & , 1, 0], Root[1 - 8*#1^2 + 8*#1^4 & , 1, 0],
    Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {Root[1 - 8*#1^2 + 8*#1^4 & , 1, 0], Root[1 - 8*#1^2 + 8*#1^4 & , 4, 0],
    Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {Root[1 - 8*#1^2 + 8*#1^4 & , 4, 0], Root[1 - 8*#1^2 + 8*#1^4 & , 1, 0],
    Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {Root[1 - 8*#1^2 + 8*#1^4 & , 4, 0], Root[1 - 8*#1^2 + 8*#1^4 & , 4, 0],
    Root[-1 + 8*#1^2 - 16*#1^4 + 8*#1^6 + 2*#1^8 & , 1, 0] -
     Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 - 79510659072*#1^4 +
        223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3, 0]},
   {-1/2, (-1 - Sqrt[2])/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {1/2, (1 + Sqrt[2])/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {1/2, (-1 - Sqrt[2])/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {-1/2, (1 + Sqrt[2])/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {(1 + Sqrt[2])/2, -1/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {(-1 - Sqrt[2])/2, 1/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}, {(1 + Sqrt[2])/2, 1/2, -Root[-1380196801 + 1357646144*#1 + 30792952064*#1^2 - 59997409280*#1^3 -
        79510659072*#1^4 + 223146147840*#1^5 - 135651131392*#1^6 + 37664849920*#1^7 + 56891539456*#1^8 & , 3,
      0]}}, Polygon[{{11, 4, 13, 9, 12, 3, 10, 8}, {8, 10, 7}, {10, 3, 14}, {3, 12, 16}, {12, 9, 18},
    {9, 13, 20}, {13, 4, 15}, {4, 11, 17}, {11, 8, 19}, {10, 14, 7}, {3, 16, 14}, {12, 18, 16}, {9, 20, 18},
    {13, 15, 20}, {4, 17, 15}, {11, 19, 17}, {8, 7, 19}, {2, 5, 1, 6}, {5, 2, 17, 19}, {1, 5, 7, 14},
    {6, 1, 16, 18}, {2, 6, 20, 15}, {15, 17, 2}, {19, 7, 5}, {14, 16, 1}, {18, 20, 6}}]]]

In[623]:=

"GyroelongatedSquareCupola_19.gif"

Out[623]=

"GyroelongatedSquareCupola_20.gif"

In[624]:=

"GyroelongatedSquareCupola_21.gif"

Out[624]=

"GyroelongatedSquareCupola_22.gif"

In[625]:=

"GyroelongatedSquareCupola_23.gif"

Out[625]=

"GyroelongatedSquareCupola_24.gif"

Johnson Polyhedra

Geometry