Hellenica World

Gyroelongated pentagonal rotunda

In[590]:=

"GyroelongatedPentagonalRotunda_2.gif"

Out[590]=

"GyroelongatedPentagonalRotunda_3.gif"

In[591]:=

"GyroelongatedPentagonalRotunda_4.gif"

Out[591]=

"GyroelongatedPentagonalRotunda_5.gif"

In[592]:=

"GyroelongatedPentagonalRotunda_6.gif"

Out[592]=

"GyroelongatedPentagonalRotunda_7.gif"

In[593]:=

"GyroelongatedPentagonalRotunda_8.gif"

Out[593]=

"GyroelongatedPentagonalRotunda_9.gif"

In[594]:=

"GyroelongatedPentagonalRotunda_10.gif"

Out[594]=

"GyroelongatedPentagonalRotunda_11.gif"

In[595]:=

"GyroelongatedPentagonalRotunda_12.gif"

Out[595]=

"GyroelongatedPentagonalRotunda_13.gif"

In[596]:=

"GyroelongatedPentagonalRotunda_14.gif"

Out[596]=

"GyroelongatedPentagonalRotunda_15.gif"

In[597]:=

"GyroelongatedPentagonalRotunda_16.gif"

Out[597]=

"GyroelongatedPentagonalRotunda_17.gif"

In[598]:=

"GyroelongatedPentagonalRotunda_18.gif"

Out[598]//InputForm=

Graphics3D[GraphicsComplex[
  {{0, (-1 - Sqrt[5])/2, -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 +
        1458987101440*#1^4 - 13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 +
        1113913753600*#1^8 & , 2, 0]}, {0, (1 + Sqrt[5])/2,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {(-1 - Sqrt[5])/2, 0, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {(1 + Sqrt[5])/2, 0, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0], (-3 - Sqrt[5])/4,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0], (3 + Sqrt[5])/4,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0], (-3 - Sqrt[5])/4,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0], (3 + Sqrt[5])/4,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {-1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {-1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {1/2, Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {(-3 - Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {(-3 - Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {(3 + Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 1, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {(3 + Sqrt[5])/4, Root[5 - 20*#1^2 + 16*#1^4 & , 4, 0],
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], -1/2,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 40*#1^2 + 16*#1^4 & , 1, 0], 1/2,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0], -1/2,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[5 - 40*#1^2 + 16*#1^4 & , 4, 0], 1/2,
    -Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 10*#1^2 + 5*#1^4 & , 4, 0], 0, Root[1 - 5*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 4, 0], (-3 - Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 4, 0], (3 + Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (-1 - Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 100*#1^2 + 80*#1^4 & , 1, 0], (1 + Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 5*#1^2 + 5*#1^4 & , 1, 0], 0, Root[1 - 10*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (-1 - Sqrt[5])/4, Root[1 - 10*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 2, 0], (1 + Sqrt[5])/4, Root[1 - 10*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 40*#1^2 + 80*#1^4 & , 4, 0], -1/2, Root[1 - 10*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]},
   {Root[1 - 40*#1^2 + 80*#1^4 & , 4, 0], 1/2, Root[1 - 10*#1^2 + 5*#1^4 & , 4, 0] -
     Root[-1134275041 + 44661048320*#1 - 591623768800*#1^2 + 2613025843200*#1^3 + 1458987101440*#1^4 -
        13318096486400*#1^5 - 10622929920000*#1^6 - 3906043904000*#1^7 + 1113913753600*#1^8 & , 2, 0]}},
  Polygon[{{14, 10, 12, 16, 4, 15, 11, 9, 13, 3}, {3, 13, 17}, {13, 9, 5}, {9, 11, 1}, {11, 15, 7},
    {15, 4, 19}, {4, 16, 20}, {16, 12, 8}, {12, 10, 2}, {10, 14, 6}, {14, 3, 18}, {13, 5, 17}, {9, 1, 5},
    {11, 7, 1}, {15, 19, 7}, {4, 20, 19}, {16, 8, 20}, {12, 2, 8}, {10, 6, 2}, {14, 18, 6}, {3, 17, 18},
    {28, 26, 27, 29, 30}, {25, 26, 28}, {24, 27, 26}, {22, 29, 27}, {21, 30, 29}, {23, 28, 30}, {8, 2, 23},
    {6, 18, 25}, {17, 5, 24}, {1, 7, 22}, {19, 20, 21}, {2, 6, 25, 28, 23}, {18, 17, 24, 26, 25},
    {5, 1, 22, 27, 24}, {7, 19, 21, 29, 22}, {20, 8, 23, 30, 21}}]]]

In[599]:=

"GyroelongatedPentagonalRotunda_19.gif"

Out[599]=

"GyroelongatedPentagonalRotunda_20.gif"

In[600]:=

"GyroelongatedPentagonalRotunda_21.gif"

Out[600]=

"GyroelongatedPentagonalRotunda_22.gif"

In[601]:=

"GyroelongatedPentagonalRotunda_23.gif"

Out[601]=

"GyroelongatedPentagonalRotunda_24.gif"

Johnson Polyhedra

Geometry