In[566]:=
Out[566]=
In[567]:=
Out[567]=
In[568]:=
Out[568]=
In[569]:=
Out[569]=
In[570]:=
Out[570]=
In[571]:=
Out[571]=
In[572]:=
Out[572]=
In[573]:=
Out[573]=
In[574]:=
Out[574]//InputForm=
Graphics3D[GraphicsComplex[{{0, (-1 - Sqrt[5])/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1,
0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 +
3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 +
10894704640000*#1^8 & , 3, 0]}, {0, (1 + Sqrt[5])/2,
Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{0, -Sqrt[1 + 2/Sqrt[5]], Root[361 + 1520*#1 - 13240*#1^2 + 19200*#1^3 + 7760*#1^4 - 25600*#1^5 +
6400*#1^8 & , 4, 0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 -
28990840217600*#1^3 + 3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 -
47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]}, {0, Sqrt[(5 + Sqrt[5])/10],
Root[-479 - 6240*#1 - 8600*#1^2 + 16000*#1^3 + 49360*#1^4 - 44800*#1^5 - 12800*#1^6 + 6400*#1^8 & , 4,
0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 +
3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 +
10894704640000*#1^8 & , 3, 0]}, {(-1 - Sqrt[5])/2, 0,
Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Sqrt[(5 + Sqrt[5])/10], 0, Root[641 + 7760*#1 + 8360*#1^2 - 22400*#1^3 - 11440*#1^4 + 19200*#1^5 +
6400*#1^8 & , 2, 0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 -
28990840217600*#1^3 + 3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 -
47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]}, {-1/2, -Sqrt[5 + 2*Sqrt[5]]/2,
Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], (-1 - Sqrt[5])/4,
Root[641 + 7760*#1 + 8360*#1^2 - 22400*#1^3 - 11440*#1^4 + 19200*#1^5 + 6400*#1^8 & , 2, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], (1 + Sqrt[5])/4,
Root[641 + 7760*#1 + 8360*#1^2 - 22400*#1^3 - 11440*#1^4 + 19200*#1^5 + 6400*#1^8 & , 2, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(1 + Sqrt[5])/2, 0, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{-Sqrt[(5 + Sqrt[5])/2]/2, (-3 - Sqrt[5])/4, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{-Sqrt[(5 + Sqrt[5])/2]/2, (3 + Sqrt[5])/4, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{-Sqrt[1 + 2/Sqrt[5]]/2, -1/2, Root[641 + 7760*#1 + 8360*#1^2 - 22400*#1^3 - 11440*#1^4 + 19200*#1^5 +
6400*#1^8 & , 2, 0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 -
28990840217600*#1^3 + 3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 -
47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]}, {-Sqrt[1 + 2/Sqrt[5]]/2, 1/2,
Root[641 + 7760*#1 + 8360*#1^2 - 22400*#1^3 - 11440*#1^4 + 19200*#1^5 + 6400*#1^8 & , 2, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{-1/2, Sqrt[5 + 2*Sqrt[5]]/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{1/2, -Sqrt[5 + 2*Sqrt[5]]/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{1/2, Sqrt[5 + 2*Sqrt[5]]/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(-3 - Sqrt[5])/4, -Sqrt[(5 + Sqrt[5])/2]/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(-3 - Sqrt[5])/4, Sqrt[5/8 + Sqrt[5]/8], Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(3 + Sqrt[5])/4, -Sqrt[(5 + Sqrt[5])/2]/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(3 + Sqrt[5])/4, Sqrt[5/8 + Sqrt[5]/8], Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{-Sqrt[5 + 2*Sqrt[5]]/2, -1/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{-Sqrt[5 + 2*Sqrt[5]]/2, 1/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Sqrt[5 + 2*Sqrt[5]]/2, -1/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{Sqrt[5 + 2*Sqrt[5]]/2, 1/2, Root[1 + 8*#1^2 - 176*#1^4 + 512*#1^6 + 256*#1^8 & , 1, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(3 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0],
Root[361 + 1520*#1 - 13240*#1^2 + 19200*#1^3 + 7760*#1^4 - 25600*#1^5 + 6400*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(1 + Sqrt[5])/4, Sqrt[5/8 + 11/(8*Sqrt[5])],
Root[361 + 1520*#1 - 13240*#1^2 + 19200*#1^3 + 7760*#1^4 - 25600*#1^5 + 6400*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(-1 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0],
Root[-479 - 6240*#1 - 8600*#1^2 + 16000*#1^3 + 49360*#1^4 - 44800*#1^5 - 12800*#1^6 + 6400*#1^8 & , 4,
0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 +
3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 +
10894704640000*#1^8 & , 3, 0]}, {-1/2, -Sqrt[1 + 2/Sqrt[5]]/2,
Root[-479 - 6240*#1 - 8600*#1^2 + 16000*#1^3 + 49360*#1^4 - 44800*#1^5 - 12800*#1^6 + 6400*#1^8 & , 4,
0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 +
3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 +
10894704640000*#1^8 & , 3, 0]}, {(-3 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 1, 0],
Root[361 + 1520*#1 - 13240*#1^2 + 19200*#1^3 + 7760*#1^4 - 25600*#1^5 + 6400*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(-1 - Sqrt[5])/4, Sqrt[5/8 + 11/(8*Sqrt[5])],
Root[361 + 1520*#1 - 13240*#1^2 + 19200*#1^3 + 7760*#1^4 - 25600*#1^5 + 6400*#1^8 & , 4, 0] -
Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 + 3719440179200*#1^4 +
76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{1/2, -Sqrt[1 + 2/Sqrt[5]]/2, Root[-479 - 6240*#1 - 8600*#1^2 + 16000*#1^3 + 49360*#1^4 - 44800*#1^5 -
12800*#1^6 + 6400*#1^8 & , 4, 0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 -
28990840217600*#1^3 + 3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 -
47248834560000*#1^7 + 10894704640000*#1^8 & , 3, 0]},
{(1 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0],
Root[-479 - 6240*#1 - 8600*#1^2 + 16000*#1^3 + 49360*#1^4 - 44800*#1^5 - 12800*#1^6 + 6400*#1^8 & , 4,
0] - Root[482477187239 + 2343512990720*#1 - 5105030091520*#1^2 - 28990840217600*#1^3 +
3719440179200*#1^4 + 76573704192000*#1^5 + 32992002048000*#1^6 - 47248834560000*#1^7 +
10894704640000*#1^8 & , 3, 0]}}, Polygon[{{27, 23, 10}, {14, 19, 23}, {2, 17, 19}, {12, 21, 17},
{25, 5, 21}, {24, 20, 5}, {11, 7, 20}, {1, 18, 7}, {13, 22, 18}, {26, 10, 22}, {27, 14, 23}, {14, 2, 19},
{2, 12, 17}, {12, 25, 21}, {25, 24, 5}, {24, 11, 20}, {11, 1, 7}, {1, 13, 18}, {13, 26, 22},
{26, 27, 10}, {6, 8, 15, 16, 9}, {12, 2, 9, 16}, {24, 25, 16, 15}, {1, 11, 15, 8}, {26, 13, 8, 6},
{14, 27, 6, 9}, {9, 2, 14}, {16, 25, 12}, {15, 11, 24}, {8, 13, 1}, {6, 27, 26}, {4, 30, 31, 34, 35},
{33, 30, 4}, {32, 31, 30}, {3, 34, 31}, {28, 35, 34}, {29, 4, 35}, {23, 19, 29}, {17, 21, 33},
{5, 20, 32}, {7, 18, 3}, {22, 10, 28}, {19, 17, 33, 4, 29}, {21, 5, 32, 30, 33}, {20, 7, 3, 31, 32},
{18, 22, 28, 34, 3}, {10, 23, 29, 35, 28}}]]]
In[575]:=
Out[575]=
In[576]:=
Out[576]=
In[577]:=
Out[577]=
Johnson Polyhedra
Geometry