Hellenica World

Gyroelongated pentagonal bicupola

In[530]:=

"GyroelongatedPentagonalBicupola_2.gif"

Out[530]=

"GyroelongatedPentagonalBicupola_3.gif"

In[531]:=

"GyroelongatedPentagonalBicupola_4.gif"

Out[531]=

"GyroelongatedPentagonalBicupola_5.gif"

In[532]:=

"GyroelongatedPentagonalBicupola_6.gif"

Out[532]=

"GyroelongatedPentagonalBicupola_7.gif"

In[533]:=

"GyroelongatedPentagonalBicupola_8.gif"

Out[533]=

"GyroelongatedPentagonalBicupola_9.gif"

In[534]:=

"GyroelongatedPentagonalBicupola_10.gif"

Out[534]=

"GyroelongatedPentagonalBicupola_11.gif"

In[535]:=

"GyroelongatedPentagonalBicupola_12.gif"

Out[535]=

"GyroelongatedPentagonalBicupola_13.gif"

In[536]:=

"GyroelongatedPentagonalBicupola_14.gif"

Out[536]=

"GyroelongatedPentagonalBicupola_15.gif"

In[537]:=

"GyroelongatedPentagonalBicupola_16.gif"

Out[537]=

"GyroelongatedPentagonalBicupola_17.gif"

In[538]:=

"GyroelongatedPentagonalBicupola_18.gif"

Out[538]//InputForm=

Graphics3D[GraphicsComplex[{{(-1 - Sqrt[5])/2, 0, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {-Sqrt[5 + 2*Sqrt[5]]/2, -1/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {-Sqrt[5 + 2*Sqrt[5]]/2, 1/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {-(1 + Sqrt[5])^2/8, -Sqrt[(5 + Sqrt[5])/2]/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {-(1 + Sqrt[5])^2/8, Sqrt[5/8 + Sqrt[5]/8], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {-Sqrt[(5 + Sqrt[5])/2]/2, (-3 - Sqrt[5])/4, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {-Sqrt[(5 + Sqrt[5])/2]/2, (3 + Sqrt[5])/4, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {(-1 - Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] +
     Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2}, {-Sqrt[1 + 2/Sqrt[5]]/2, -1/2,
    Root[1 - 5*#1^2 + 5*#1^4 & , 2, 0] + Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {-Sqrt[1 + 2/Sqrt[5]]/2, 1/2, Root[1 - 5*#1^2 + 5*#1^4 & , 2, 0] +
     Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2}, {-1/2, -Sqrt[5 + 2*Sqrt[5]]/2,
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2}, {-1/2, -Sqrt[1 + 2/Sqrt[5]]/2,
    Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] + Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {-1/2, Sqrt[5 + 2*Sqrt[5]]/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {0, (-1 - Sqrt[5])/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {0, Sqrt[(5 + Sqrt[5])/10], Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] +
     Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {0, (1 + Sqrt[5])/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], (-1 - Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 2, 0] +
     Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2}, {Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0],
    (1 + Sqrt[5])/4, Root[1 - 5*#1^2 + 5*#1^4 & , 2, 0] + Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/
      2}, {1/2, -Sqrt[5 + 2*Sqrt[5]]/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {1/2, -Sqrt[1 + 2/Sqrt[5]]/2, Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] +
     Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2}, {1/2, Sqrt[5 + 2*Sqrt[5]]/2,
    Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {(1 + Sqrt[5])/4, Root[1 - 20*#1^2 + 80*#1^4 & , 3, 0], Root[1 - 5*#1^2 + 5*#1^4 & , 3, 0] +
     Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2}, {Sqrt[(5 + Sqrt[5])/10], 0,
    Root[1 - 5*#1^2 + 5*#1^4 & , 2, 0] + Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {Sqrt[5/8 + Sqrt[5]/8], (-3 - Sqrt[5])/4, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {Sqrt[5/8 + Sqrt[5]/8], (3 + Sqrt[5])/4, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {(3 + Sqrt[5])/4, -Sqrt[(5 + Sqrt[5])/2]/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {(3 + Sqrt[5])/4, Sqrt[5/8 + Sqrt[5]/8], Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2},
   {Sqrt[5 + 2*Sqrt[5]]/2, -1/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {Sqrt[5 + 2*Sqrt[5]]/2, 1/2, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 1, 0]/2},
   {(1 + Sqrt[5])/2, 0, Root[1 + 2*#1^2 - 11*#1^4 + 8*#1^6 + #1^8 & , 4, 0]/2}},
  Polygon[{{1, 2, 4}, {1, 3, 2}, {1, 5, 3}, {1, 8, 5}, {2, 6, 4}, {2, 9, 6}, {3, 5, 7}, {3, 7, 10},
    {4, 6, 11}, {4, 11, 12}, {5, 13, 7}, {6, 14, 11}, {7, 13, 16}, {11, 14, 19}, {13, 15, 21}, {13, 21, 16},
    {14, 17, 24}, {14, 24, 19}, {16, 21, 25}, {16, 25, 18}, {19, 24, 26}, {19, 26, 20}, {21, 27, 25},
    {22, 30, 27}, {23, 29, 28}, {24, 28, 26}, {25, 27, 29}, {26, 28, 30}, {27, 30, 29}, {28, 29, 30},
    {12, 8, 1, 4}, {9, 2, 3, 10}, {15, 13, 5, 8}, {14, 6, 9, 17}, {10, 7, 16, 18}, {19, 20, 12, 11},
    {27, 21, 15, 22}, {24, 17, 23, 28}, {23, 18, 25, 29}, {30, 22, 20, 26}, {22, 15, 8, 12, 20},
    {17, 9, 10, 18, 23}}]]]

In[539]:=

"GyroelongatedPentagonalBicupola_19.gif"

Out[539]=

"GyroelongatedPentagonalBicupola_20.gif"

In[540]:=

"GyroelongatedPentagonalBicupola_21.gif"

Out[540]=

"GyroelongatedPentagonalBicupola_22.gif"

In[541]:=

"GyroelongatedPentagonalBicupola_23.gif"

Out[541]=

"GyroelongatedPentagonalBicupola_24.gif"

Johnson Polyhedra

Geometry