.
Cube 10-Compound
In[273]:=
Out[273]=
In[274]:=
Out[274]=
In[275]:=
Out[275]=
In[276]:=
Out[276]=
In[277]:=
Out[277]=
In[278]:=
Out[278]=
In[279]:=
Out[279]=
In[280]:=
Out[280]=
In[281]:=
Out[281]//InputForm=
Graphics3D[GraphicsComplex[{{-1/2, -1/2, -1/2}, {-1/2, -1/2, 1/2}, {-1/2, 1/2, -1/2}, {-1/2, 1/2, 1/2}, {0, (-1 - Sqrt[5])/4, (1 - Sqrt[5])/4},
{0, (-1 - Sqrt[5])/4, (-1 + Sqrt[5])/4}, {0, (1 + Sqrt[5])/4, (1 - Sqrt[5])/4}, {0, (1 + Sqrt[5])/4, (-1 + Sqrt[5])/4},
{0, (1 - 2*Sqrt[2] + Sqrt[5] + 2*Sqrt[10])/12, (1 + 2*Sqrt[2] - Sqrt[5] + 2*Sqrt[10])/12},
{0, (1 - 2*Sqrt[2] + Sqrt[5] + 2*Sqrt[10])/12, Root[1 - 44*#1 - 100*#1^2 + 48*#1^3 + 144*#1^4 & , 1, 0]},
{0, (-1 + 2*Sqrt[2] - Sqrt[5] - 2*Sqrt[10])/12, (1 + 2*Sqrt[2] - Sqrt[5] + 2*Sqrt[10])/12},
{0, (-1 + 2*Sqrt[2] - Sqrt[5] - 2*Sqrt[10])/12, Root[1 - 44*#1 - 100*#1^2 + 48*#1^3 + 144*#1^4 & , 1, 0]}, {1/2, -1/2, -1/2},
{1/2, -1/2, 1/2}, {1/2, 1/2, -1/2}, {1/2, 1/2, 1/2}, {-(1/Sqrt[2]), (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12,
(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12}, {-(1/Sqrt[2]), (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
{-(1/Sqrt[2]), (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12},
{-(1/Sqrt[2]), (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
{1/Sqrt[2], (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12},
{1/Sqrt[2], (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12},
{1/Sqrt[2], (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12},
{1/Sqrt[2], (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12}, {(-1 - Sqrt[5])/4, (1 - Sqrt[5])/4, 0},
{(-1 - Sqrt[5])/4, (-1 + Sqrt[5])/4, 0}, {(1 - Sqrt[5])/4, 0, (-1 - Sqrt[5])/4}, {(1 - Sqrt[5])/4, 0, (1 + Sqrt[5])/4},
{(-1 + Sqrt[5])/4, 0, (-1 - Sqrt[5])/4}, {(-1 + Sqrt[5])/4, 0, (1 + Sqrt[5])/4}, {(1 + Sqrt[5])/4, (1 - Sqrt[5])/4, 0},
{(1 + Sqrt[5])/4, (-1 + Sqrt[5])/4, 0}, {(1 - Sqrt[10])/6, (-1 - Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12},
{(1 - Sqrt[10])/6, (-1 - Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6}, {(1 - Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6,
(2 - 3*Sqrt[2] + Sqrt[10])/12}, {(1 - Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6},
{(-1 + Sqrt[10])/6, (-1 - Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12}, {(-1 + Sqrt[10])/6, (-1 - Sqrt[7 + 3*Sqrt[5]])/6,
(-1 + Sqrt[7 - 3*Sqrt[5]])/6}, {(-1 + Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12},
{(-1 + Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6}, {(2 - 3*Sqrt[2] + Sqrt[10])/12, (1 - Sqrt[10])/6,
(-1 - Sqrt[7 + 3*Sqrt[5]])/6}, {(2 - 3*Sqrt[2] + Sqrt[10])/12, (1 - Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6},
{(2 - 3*Sqrt[2] + Sqrt[10])/12, (-1 + Sqrt[10])/6, (-1 - Sqrt[7 + 3*Sqrt[5]])/6}, {(2 - 3*Sqrt[2] + Sqrt[10])/12, (-1 + Sqrt[10])/6,
(1 + Sqrt[7 + 3*Sqrt[5]])/6}, {(-1 + Sqrt[7 - 3*Sqrt[5]])/6, (1 - Sqrt[10])/6, (-1 - Sqrt[7 + 3*Sqrt[5]])/6},
{(-1 + Sqrt[7 - 3*Sqrt[5]])/6, (1 - Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6}, {(-1 + Sqrt[7 - 3*Sqrt[5]])/6, (-1 + Sqrt[10])/6,
(-1 - Sqrt[7 + 3*Sqrt[5]])/6}, {(-1 + Sqrt[7 - 3*Sqrt[5]])/6, (-1 + Sqrt[10])/6, (1 + Sqrt[7 + 3*Sqrt[5]])/6},
{(-1 - Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12, (1 - Sqrt[10])/6}, {(-1 - Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12,
(-1 + Sqrt[10])/6}, {(-1 - Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6, (1 - Sqrt[10])/6},
{(-1 - Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6, (-1 + Sqrt[10])/6}, {(1 + Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12,
(1 - Sqrt[10])/6}, {(1 + Sqrt[7 + 3*Sqrt[5]])/6, (2 - 3*Sqrt[2] + Sqrt[10])/12, (-1 + Sqrt[10])/6},
{(1 + Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6, (1 - Sqrt[10])/6}, {(1 + Sqrt[7 + 3*Sqrt[5]])/6, (-1 + Sqrt[7 - 3*Sqrt[5]])/6,
(-1 + Sqrt[10])/6}, {(1 - 2*Sqrt[2] + Sqrt[5] + 2*Sqrt[10])/12, (1 + 2*Sqrt[2] - Sqrt[5] + 2*Sqrt[10])/12, 0},
{(1 - 2*Sqrt[2] + Sqrt[5] + 2*Sqrt[10])/12, Root[1 - 44*#1 - 100*#1^2 + 48*#1^3 + 144*#1^4 & , 1, 0], 0},
{(1 + 2*Sqrt[2] - Sqrt[5] + 2*Sqrt[10])/12, 0, (1 - 2*Sqrt[2] + Sqrt[5] + 2*Sqrt[10])/12},
{(1 + 2*Sqrt[2] - Sqrt[5] + 2*Sqrt[10])/12, 0, (-1 + 2*Sqrt[2] - Sqrt[5] - 2*Sqrt[10])/12},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, -(1/Sqrt[2]), (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, -(1/Sqrt[2]), (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, 1/Sqrt[2], (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
{(1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, 1/Sqrt[2], (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12},
{(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, -(1/Sqrt[2])},
{(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, 1/Sqrt[2]},
{(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, -(1/Sqrt[2])},
{(1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, 1/Sqrt[2]},
{Root[1 - 44*#1 - 100*#1^2 + 48*#1^3 + 144*#1^4 & , 1, 0], 0, (1 - 2*Sqrt[2] + Sqrt[5] + 2*Sqrt[10])/12},
{Root[1 - 44*#1 - 100*#1^2 + 48*#1^3 + 144*#1^4 & , 1, 0], 0, (-1 + 2*Sqrt[2] - Sqrt[5] - 2*Sqrt[10])/12},
{(-1 + 2*Sqrt[2] - Sqrt[5] - 2*Sqrt[10])/12, (1 + 2*Sqrt[2] - Sqrt[5] + 2*Sqrt[10])/12, 0},
{(-1 + 2*Sqrt[2] - Sqrt[5] - 2*Sqrt[10])/12, Root[1 - 44*#1 - 100*#1^2 + 48*#1^3 + 144*#1^4 & , 1, 0], 0},
{(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, -(1/Sqrt[2])},
{(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (1 - Sqrt[2] - Sqrt[5]*(1 + Sqrt[2]))/12, 1/Sqrt[2]},
{(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, -(1/Sqrt[2])},
{(-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12, (-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, 1/Sqrt[2]},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, -(1/Sqrt[2]), (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, -(1/Sqrt[2]), (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, 1/Sqrt[2], (1 + Sqrt[2] + Sqrt[5] - Sqrt[10])/12},
{(-1 + Sqrt[2] + Sqrt[5] + Sqrt[10])/12, 1/Sqrt[2], (-1 - Sqrt[2] - Sqrt[5] + Sqrt[10])/12}},
Polygon[{{16, 35, 52, 42}, {16, 42, 38, 53}, {16, 53, 47, 35}, {35, 47, 1, 52}, {1, 47, 53, 38}, {52, 1, 38, 42}, {30, 79, 64, 69},
{30, 69, 62, 77}, {30, 77, 60, 79}, {79, 60, 27, 64}, {27, 60, 77, 62}, {64, 27, 62, 69}, {32, 68, 74, 58}, {32, 58, 73, 67},
{32, 67, 71, 68}, {68, 71, 25, 74}, {25, 71, 67, 73}, {74, 25, 73, 58}, {31, 57, 76, 66}, {31, 66, 72, 65}, {31, 65, 75, 57},
{57, 75, 26, 76}, {26, 75, 65, 72}, {76, 26, 72, 66}, {15, 54, 37, 41}, {15, 41, 51, 36}, {15, 36, 48, 54}, {54, 48, 2, 37}, {2, 48, 36, 51},
{37, 2, 51, 41}, {29, 80, 59, 78}, {29, 78, 61, 70}, {29, 70, 63, 80}, {80, 63, 28, 59}, {28, 63, 70, 61}, {59, 28, 61, 78}, {7, 21, 12, 17},
{7, 17, 20, 9}, {7, 9, 24, 21}, {21, 24, 6, 12}, {6, 24, 9, 20}, {12, 6, 20, 17}, {3, 40, 55, 45}, {3, 45, 33, 50}, {3, 50, 44, 40},
{40, 44, 14, 55}, {14, 44, 50, 33}, {55, 14, 33, 45}, {8, 10, 19, 18}, {8, 18, 11, 22}, {8, 22, 23, 10}, {10, 23, 5, 19}, {5, 23, 22, 11},
{19, 5, 11, 18}, {4, 39, 43, 49}, {4, 49, 34, 46}, {4, 46, 56, 39}, {39, 56, 13, 43}, {13, 56, 46, 34}, {43, 13, 34, 49}}]]]
In[282]:=
Out[282]=
In[283]:=
Out[283]=
In[284]:=
Out[284]=
Undergraduate Texts in Mathematics
Graduate Studies in Mathematics
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License