The Lommel differential equation is an inhomogeneous form of the Bessel differential equation:
Two solutions are given by the Lommel functions sμ,ν(z) and Sμ,νz), introduced by Eugen von Lommel (1880),
where Jν(z) is a Bessel function of the first kind, and Yν(z) a Bessel function of the second kind.
See also
* Anger function
* Lommel polynomial
* Struve function
* Weber function
References
* Erdélyi, Arthur; Magnus, Wilhelm; Oberhettinger, Fritz; Tricomi, Francesco G. (1953), Higher transcendental functions. Vol II, McGraw-Hill Book Company, Inc., New York-Toronto-London, MR0058756
* Lommel, E. (1875), "Ueber eine mit den Bessel'schen Functionen verwandte Function", Math. Ann. 9: 425–444, doi:10.1007/BF01443342
* Lommel, E. (1880), "Zur Theorie der Bessel'schen Funktionen IV", Math. Ann. 16: 183–208, doi:10.1007/BF01446386
* Paris, R. B. (2010), "Lommel function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, http://dlmf.nist.gov/11.9
* Solomentsev, E.D. (2001), "Lommel function", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/l/l060800.htm
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License