Richard Dagobert Brauer (February 10, 1901 – April 17, 1977) was a leading German and American mathematician. He worked mainly in abstract algebra, but made important contributions to number theory. He was the founder of modular representation theory.
Education and career
Alfred Brauer was Richard’s brother and seven years older. Alfred and Richard were both interested in science and mathematics, but Alfred was injured in combat in World War I. As a boy, Richard dreamt of becoming an inventor, and in February 1919 enrolled in Technische Hochschule Berlin-Charlottenburg. He soon transferred to University of Berlin. Except for the summer of 1920 when he studied at University of Freiburg, he studied in Berlin, being awarded his doctorate 16 March 1926. Issai Schur conducted a seminar and posed a problem in 1921 that Alfred and Richard worked on together, and published a result. The problem also was solved by Heinz Hopf at the same time. Richard wrote his thesis under Schur, providing an algebraic approach to irreducible, continuous, finite-dimensional representations of real orthogonal (rotation) groups.
Ilse Karger also studied mathematics at the University of Berlin; she and Richard were married 17 September 1925. Their boys George Ulrich (b 1927) and Fred Gunther (b 1932) also became mathematicians. Brauer began his teaching career in Königsberg (now Kaliningrad) working as Konrad Knopp’s assistant. Brauer expounded central division algebras over a perfect field while in Königsberg; the isomorphism classes of such algebras form the elements of the Brauer group he introduced.
When the Nazi Party took over in 1933, the Emergency Committee in Aid of Displaced Foreign Scholars took action. By November Richard, Ilse, George, and Fred were in Lexington, Kentucky. Alfred made it the USA in 1939, but their sister Alice was killed in The Holocaust.
Hermann Weyl invited Richard to assist him at Princeton’s Institute for Advanced Study in 1934. Richard and Nathan Jacobson edited Weyl’s lectures Structure and Representation of Continuous Groups. Through the influence of Emmy Noether, Richard was invited to University of Toronto to take up a faculty position. With his graduate student Cecil J. Nesbitt he developed modular representation theory, published in 1937. Nathan Mendelsohn, Robert Steinberg, and Stephen Arthur Jennings were also Brauer’s students in Toronto. Brauer also conducted international research with Tadasi Nakayama on representations of algebras. In 1941 University of Wisconsin hosted visiting professor Brauer. The following year he visited the Institute for Advanced Study and Bloomington, Indiana where Emil Artin was teaching.
In 1948 Richard and Ilse moved to Ann Arbor, Michigan where he and Robert M. Thrall contributed to the program in modern algebra at University of Michigan. With his graduate student K. A. Fowler, Brauer proved the Brauer-Fowler theorem. Donald John Lewis was another of his students at UM.
In 1952 Brauer joined the faculty of Harvard University. Before retiring in 1971 he taught aspiring mathematicians such as Donald Passman and I. Martin Isaacs. The Brauers frequently traveled to see their friends such as Reinhold Baer, Werner Wolfgang Rogosinski, and Carl Ludwig Siegel.
Mathematical work
Several theorems bear his name, including Brauer's induction theorem, which has applications in number theory as well as finite group theory, and its corollary Brauer's characterization of characters, which is central to the theory of group characters.
The Brauer–Fowler theorem, published in 1956, later provided significant impetus towards the classification of finite simple groups, for it implied that there could only be finitely many finite simple groups for which the centralizer of an involution (element of order 2) had a specified structure.
Brauer applied modular representation theory to obtain subtle information about group characters, particularly via his three main theorems. These methods were particularly useful in the classification of finite simple groups with low rank Sylow 2-subgroups. The Brauer–Suzuki theorem showed that no finite simple group could have a generalized quaternion Sylow 2-subgroup, and the Alperin–Brauer–Gorenstein theorem classified finite groups with wreathed or quasidihedral Sylow 2-subgroups. The methods developed by Brauer were also instrumental in contributions by others to the classification program: for example, the Gorenstein–Walter theorem, classifying finite groups with a dihedral Sylow 2-subgroup, and Glauberman's Z* theorem. The theory of a block with a cyclic defect group, first worked out by Brauer in the case when the principal block has defect group of order p, and later worked out in full generality by E.C. Dade, also had several applications to group theory, for example to finite groups of matrices over the complex numbers in small dimension. The Brauer tree is a combinatorial object associated to a block with cyclic defect group which encodes much information about the structure of the block.
In 1970, he was awarded the National Medal of Science.[1]
See also
Brauer algebra
Brauer group, the equivalence classes of brauer algebras over the same field F equipped with a group operation
Brauer–Cartan–Hua theorem
Brauer–Nesbitt theorem
Brauer–Manin obstruction
Brauer–Siegel theorem
Brauer–Suzuki theorem
Brauer's theorem
Brauer's theorem on induced characters
Brauer characters
Publications
Brauer, R.; Sah, Chih-han, eds. (1969), Theory of finite groups: A symposium, W. A. Benjamin, Inc., New York-Amsterdam, MR0240186
Brauer, R. (1980), Fong, Paul; Wong, Warren J., eds., Collected papers. Vol. I, Mathematicians of Our Time, 17, MIT Press, ISBN 978-0-262-02135-7, MR581120
Brauer, R. (1980), Fong, Paul; Wong, Warren J., eds., Collected papers. Vol. II, Mathematicians of Our Time, 18, MIT Press, ISBN 978-0-262-02148-7, MR581120
Brauer, R. (1980), Fong, Paul; Wong, Warren J., eds., Collected papers. Vol. III, Mathematicians of Our Time, 19, MIT Press, ISBN 978-0-262-02149-4, MR581120
References
^ National Science Foundation - The President's National Medal of Science
Curtis, Charles W. (2003), Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, History of Mathematics, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2677-5, MR1715145 Review
James Alexander Green (1978) "Richard Dagobert Brauer", Bulletin of the London Mathematical Society 10:317–42.
Feit, Walter (1979), "Richard D. Brauer", American Mathematical Society. Bulletin. New Series 1 (1): 1–20, doi:10.1090/S0273-0979-1979-14547-6, ISSN 0002-9904, MR513747
External links
O'Connor, John J.; Robertson, Edmund F., "Richard Brauer", MacTutor History of Mathematics archive, University of St Andrews.
Richard Brauer at the Mathematics Genealogy Project
Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License